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Abstract

Ontology verification is concerned with the relationship
between the intended structures for an ontology and the
models of the axiomatization of the ontology. The verifica-
tion of a particular ontology requires characterization of
the models of the ontology up to isomorphism and a proof
that these models are equivalent to the intended structures
for the ontology. In this paper we consider the verification
of three time ontologies (first introduced by Hayes in his
Catalog of Temporal Theories) that axiomatize both time-
points and time intervals together with the relationships
between them. We identify axioms that are missing from
these ontologies and provide a complete account of the
metatheoretic relationships between the ontologies.

I. Introduction

An ontology is a logical theory that axiomatizes the
concepts in some domain, which can either be common-
sense knowledge representation (such as time, process,
and shape) or the representation of knowledge in more
technical domains (such as biology and engineering). Ver-
ification of an ontology is concerned with the relationship
between the intended structures for an ontology and the
models of the axiomatization of the ontology. In particular,
we want to characterize the models of an ontology up to
isomorphism and determine whether or not these models
are equivalent to the intended structures for the ontology.
This relationship between the intended structures and the
models of the axiomatization plays a key role in the appli-
cation of ontologies in areas such as semantic integration
and decision support.

Over the years, a number of first-order ontologies for
time have been proposed, and many of these were collected
by Hayes in [1]. In addition to ontologies that axiomatize

only time points and ontologies that axiomatize only time
intervals ([2], [3]), Hayes also included three ontologies
that axiomatize both timepoints and time intervals together
with the relationships between them. Remarkably, there has
been no work on a formal characterization of the models
of these ontologies up to isomorphism, despite the fact that
upper ontologies such as SUMO [4], Cyc [5], and OWL-
Time ([6], [7], [8]) incorporate axiomatizations that are
very similar to the ontologies from [1]. Although Hayes
describes some models of the ontologies, he does not
provide a characterization of all models, or any discussion
concerning the existence of potentially unintended models.

After reviewing our approach to ontology verifica-
tion, we examine the three ontologies from [1] that
combine timepoints and time intervals – endpoints,
vector continuum, and point continuum 1. For each
theory, we provide a representation theorem (characteri-
zation of the models of the ontology up to isomorphism)
which also enables us to understand the metalogical rela-
tionships between the theories. Within each theory, we also
identify missing axioms that are needed to either derive
claims made by Hayes or to eliminate unintended models
and ensure the proof of the representation theorem for the
theory.

All proofs in this paper were generated using the
Prover9 automated theorem prover. Counterexamples
(models that satisfy the negation of a proposed axiom and
hence demonstrate the independence of an axiom from an
ontology) were generated using Mace4.

In this paper, we are providing a logical analysis of the
models of each ontology; we do not critique the underlying
ontological commitments, and hence we are not interested
in questions concerning which ontology is appropriate to

1The online CLIF (Common Logic Interchange Format) axiomatization
of these theories can be found at
http://stl.mie.utoronto.ca/colore/time/endpoints
http://stl.mie.utoronto.ca/colore/time/vector_continuum
http://stl.mie.utoronto.ca/colore/time/point_continuum



use as a time ontology in a given context.

II. Ontology Verification

Our methodology revolves around the application of
model-theoretic notions to the design and analysis of
ontologies. The semantics of the ontology’s terminology
can be characterized by a set of structures, which we
refer to as the set of intended structures for the ontology.
Intended structures are specified with respect to the models
of well-understood mathematical theories (such as partial
orderings, lattices, incidence structures, geometries, and
algebra). The extensions of the relations in an intended
structure are then specified with respect to properties of
these models.

Why do we care about ontology verification? The
relationship between the intended models and the models
of the axiomatization plays a key role in the application
of ontologies in areas such as semantic integration and
decision support. Software systems are semantically in-
tegrated if their sets of intended models are equivalent.
In the area of decision support, the verification of an
ontology allows us to make the claim that any inferences
drawn by a reasoning engine using the ontology are
actually entailed by the ontology’s intended models. If an
ontology’s axiomatization has unintended models, then it is
possible to find sentences that are entailed by the intended
models, but which are not provable from the axioms of
the ontology. The existence of unintended models also
prevents the entailment of sentences or a possible barriers
to interoperability.

With ontology verification, we want to characterize the
models of an ontology up to isomorphism and determine
whether or not these models are elementarily equivalent
to the intended structures of the ontology. From a mathe-
matical perspective this is formalized by the notion of rep-
resentation theorems. Representation theorems are proven
in two parts – we first prove every intended structure
is a model of the ontology and then prove that every
model of the ontology is elementary equivalent to some
intended structure. Classes of structures for theories within
an ontology are therefore axiomatized up to elementary
equivalence – the theories are satisfied by any structure in
the class, and any model of the theories is elementarily
equivalent to a structure in the class.

A. Interpretability

We now show how a theorem about the relationship
between the class of the ontology’s models and the class
of intended structures can be replaced by a theorem about
the relationship between the ontology (a theory) and the
theory axiomatizing the intended structures (assuming that

such axiomatization is known). We will later show how
we can use automated reasoners to prove this relationship
and thus verify an ontology in a (semi-)automated way.

The relationship between theories TA and TB is the
notion of interpretation, which is a mapping from the
language of TA to the language of TB that preserves the
theorems of TA. We adopt the next two definitions from
[9]:

Definition 1: An interpretation π of a theory T0 with
language L0 into a theory T1 with language L1 is a
function on the set of parameters of L0 such that

1) π assigns to ∀ a formula π∀ of L1 in which at most
the variable v1 occurs free, such that

T1 |= (∃v1) π∀

2) π assigns to each n-place relation symbol P a
formula πP of L1 in which at most the variables
v1, ..., vn occur free.

3) For any sentence σ in L0,

T0 |= σ ⇒ T1 |= π(σ)

Thus, the mapping π is an interpretation of T0 if it
preserves the theorems of T0.

If there is an interpretation of TA in TB , then there ex-
ists a set of sentences (referred to as translation definitions)
in the language LA ∪ LB of the form

(∀x) pi(x) ≡ ϕ(x)

where pi(x) is a relation symbol in LA and ϕ(x) is a
formula in LB .

We will say that two theories TA and TB are definably
equivalent iff they are mutually interpretable, i.e. TA is
interpretable in TB and TB is interpretable in TA.

Definition 2: An interpretation π of a theory T0 into a
theory T1 is faithful iff there exists an interpretation π of
T0 into T1 and

T0 6|= σ ⇒ T1 6|= π(σ)

for any sentence σ ∈ L(T0).
Thus, the mapping π is a faithful interpretation of T0 if

it preserves satisfiability with respect to T0. We will also
refer to this by saying that T0 is faithfully interpretable in
T1.

B. Representation Theorems

The primary challenge for someone attempting to prove
representation theorems is to characterize the models of an
ontology up to isomorphism.

Definition 3: A class of structures M can be repre-
sented by a class of structures N iff there is a bijection
ϕ : M → N such that for any M ∈ M, M is definable
in ϕ(M) and ϕ(M) is definable in M.



The key to using theorem proving and model finding
to support ontology verification is the following theorem
([10]):

Theorem 1: A theory T1 is definably equivalent with
a theory T2 iff the class of models Mod(T1) can be
represented by Mod(T2).

Let Mintended be the class of intended structures for
the ontology, and let Tonto be the axiomatization of the
ontology. The necessary direction of a representation the-
orem (i.e. if a structure is intended, then it is a model of
the ontology’s axiomatization) can be stated as

M∈Mintended ⇒M ∈Mod(Tonto)

If we suppose that the theory that axiomatizes Mintended

is the union of some previously known theories T1, ..., Tn,
then by Theorem 1 we need to show that Tonto interprets
T1 ∪ ... ∪ Tn. If ∆ is the set of translation definitions
for this interpretation, then the necessary direction of
the representation theorem is equivalent to the following
reasoning task:

Tonto ∪∆ |= T1 ∪ ... ∪ Tn (Rep-1)

The sufficient direction of a representation theorem (any
model of the ontology’s axiomatization is also an intended
structure) can be stated as

M∈Mod(Tonto)⇒M ∈Mintended

In this case, we need to show that T1 ∪ ... ∪ Tn interprets
Tonto. If Π is the set of translation definitions for this
interpretation, the sufficient direction of the representation
theorem is equivalent to the following reasoning task:

T1 ∪ ... ∪ Tn ∪Π |= Tonto (Rep-2)

III. Graphical Incidence Structures

Before we begin the model-theoretic analysis of the
time ontologies, we introduce the classes of mathematical
structures which will be used in the representation theo-
rems.

The basic building blocks for the models presented in
this paper are based on the notion of incidence structures
([11]).

Definition 4: A k-partite incidence structure is a tuple
I = (Ω1, ...,Ωk, in), where Ω1, ...,Ωk are sets with

Ωi ∩ Ωj = ∅, i 6= j

and
in ⊆ (

⋃
i 6=j

Ωi × Ωj)

Two elements of I that are related by in are called incident.
The models of the time ontologies in this paper will be

constructed using special classes of incidence structures.

Definition 5: An strict graphical incidence structure is
a bipartite incidence structure

G = 〈X,Y, inG〉

such that all elements of Y are incident with exactly two
elements of X , and for each pair of points p,q ∈ X there
exists a unique element in Y that is incident with both p
and q.

The class of strict graphical incidence structures is
axiomatized by Tstrict graphical

2.
Definition 6: An strong graphical incidence structure is

a bipartite incidence structure

S = 〈X,Y, inS〉

such that all elements of Y are incident with either one or
two elements of X , and for each pair of points p,q ∈ X
there exists a unique element in Y that is incident with
both p and q.

The class of strong graphical incidence structures is
axiomatized by Tstrong graphical

3.
These two classes of incidence structures get their

names from graph-theoretic representation theorems of
their own.

Definition 7: A graph G = (V,E) consists of a
nonempty set V of vertices and a set E of ordered pairs
of vertices called edges.

An edge whose vertices coincide is called a loop. A
graph with no loops or multiple edges is a simple graph.

A complete graph is a graph in which each pair of
vertices is adjacent.

Theorem 2: Let G = (V,E) be a complete simple
graph.

A bipartite incidence structure is a strict graphical
incidence structure iff it is isomorphic to I = (V,E,∈),
where ∈ is the containment relation for vertices in an edge.

Theorem 3: Let G = (V,E) be a complete graph with
loops.

A bipartite incidence structure is a strong graphical
incidence structure iff it is isomorphic to I = (V,E,∈).

These two representation theorems show that there
is a one-to-one correspondence between each class of
incidence structures and the given class of graphs, and
in so doing, we have a characterization of the incidence
structures up to isomorphism.

The third class of incidence structures used in this
paper require the notion of the direct product of incidence
structures:

Definition 8: Given two incidence structures

2http://stl.mie.utoronto.ca/colore/incidence/
strict-graphical.clif

3http://stl.mie.utoronto.ca/colore/incidence/
strong-graphical.clif



I1 = 〈P1,L1, in1〉 and I2 = 〈P2,L2, in2〉 the direct
product I1 × I2 is the incidence structure such that
• P = P1 × P2;
• L = (P1 × L2) ∪ (L1 × P2);
• the point (x, y) is incident with the line

(x, L) ∈ P1 × L2 iff 〈y, L〉 ∈ in2;
• the point (x, y) is incident with the line

(M,y) ∈ L1 × P2 iff 〈x,M〉 ∈ in1.
Definition 9: Let G = 〈P,G, inG〉 be a strict graphical

incidence structure. Let S = 〈P, S, inS〉 be a strong
graphical incidence structure.

An incidence structure D = 〈P,X, inD〉 is a double
complete incidence structure iff

D ∼= G× S

The class of double complete incidence structures is
axiomatized by Tdouble complete

4.
As above, we can also provide a representation theorem

for double complete incidence structures with respect to a
class of graphs:

Theorem 4: Let G = (V,E) be a complete graph in
which E is a symmetric reflexive relation.

A bipartite incidence structure is a double complete
incidence structure iff it is isomorphic to I = (V,E,∈).

IV. Endpoints

The endpoints theory combines the language of inter-
vals and points by defining the functions beginof, endof,
and between to relate intervals to points and vice-versa.
This theory imports the axioms of linear point that define
the binary before relation between timepoints as transitive
and irreflexive, and impose the condition that all timepoints
are linearly ordered and infinite in both directions. The
endpoints theory includes axioms defining the meets-
at relation as one between two intervals and the point
at which they meet along with conservative definitions
for meets, precedes, overlaps, starts, during and finishes.
Finally, an axiom that restricts the beginof an interval
to always come before its endof and another that states
that intervals are between two points if they are properly
ordered complete the theory. The first of the final two
axioms has the effect of preventing single-point intervals
from existing in this theory as an interval that has the same
point as its beginof and endof would be inconsistent due
to the irreflexive property of the before relation.

In order to prove the representation theorems below,
we discovered that the following axioms are missing from

4http://stl.mie.utoronto.ca/colore/incidence/
double-complete.clif

endpoints as presented in [1]:

(∀x) timepoint(x) ∨ timeinterval(x) (1)

(∀x) timepoint(x) ⊃ ¬timeinterval(x) (2)

(∀x, y) before(x, y) ⊃

timeinterval(between(x, y)) (3)

Let Tendpoints be the theory in which endpoints is
extended with these axioms.

The first step in the verification of Tendpoints is to
prove the reasoning tasks that instantiate (Rep− 1) and
(Rep− 2):

Theorem 5: Tendpoints is definably equivalent to

Tlinear ordering ∪ Tstrict graphical

Proof: Let ∆ be the following set of translation
definitions:

(∀x) point(x) ≡ timepoint(x)

(∀x) line(x) ≡ timeinterval(x)

(∀x, y) in(x, y) ≡ ((beginof(y) = x) ∨ (endof(y) = x))

(∀x, y) before(x, y) ≡ leq(x, y)

Using Prover9, we have shown that

Tendpoints ∪∆ |= Tlinear ordering ∪ Tstrict graphical

Let Π be the following set of translation definitions:

(∀x) timepoint(x) ≡ point(x)

(∀x) timeinterval(x) ≡ line(x)

(∀x, y)(beginof(y) = x) ≡ ((in(x, y)∧((∀z)in(z, y) ⊃ leq(x, z))

(∀x, y)(endof(y) = x) ≡ ((in(x, y)∧((∀z)in(z, y) ⊃ leq(z, x))

(∀x, y) before(x, y) ≡ leq(x, y)

Using Prover9, we have shown that

Tlinear ordering ∪ Tstrict graphical ∪Π |= Tendpoints

The second step in the verification of Tendpoints is to
define the class of intended models:

Definition 10: Mendpoints is the following class of
structures: M∈Mendpoints iff

1) M∼= P ∪G, where
a) P = 〈P,≤〉 is a linear ordering
b) G = 〈P,G, inG〉 is a strict graphical incidence

structure.
2) 〈t〉 ∈ timepoint iff t ∈ P ;
3) 〈i〉 ∈ timeinterval iff i ∈ G;



4) beginof(i) = t iff 〈t, i〉 ∈ inG and for any t′ ∈ P
such that 〈t′, i〉 ∈ inG, we have t ≤ t′.

5) endof(i) = t iff 〈t, i〉 ∈ inG and for any t′ ∈ P
such that 〈t′, i〉 ∈ inG, we have t′ ≤ t.

6) between(t1, t2) = i iff 〈t1, i〉, 〈t2, i〉 ∈ inG;
7) 〈t1, t2〉 ∈ before iff t1 < t2.
We can now state the Representation Theorem for

Tendpoints:
Theorem 6: M ∈ Mendpoints iff M ∈

Mod(Tendpoints).
Proof: This follows from Theorem 5 and Theorem

1, together with the fact that Tstrict graphical axioma-
tizes the class of strict graphical incidence structures and
Tlinear ordering axiomatizes the class of linear orderings.

V. Vector Continuum

The vector continuum theory is a theory of time-
points and intervals that introduces the notion of orien-
tation of intervals. It also imports theory linear point
and adds to it axioms that define the meets-at relation
and the conservative definitions of meets, precedes, over-
laps, starts, during and finishes in the same way as the
endpoints theory. Although it has the same three functions
(beginof, endof, and between) that transform intervals to
points and vice-versa, it differs in its definition of between
by allowing the formation of intervals whose endof point is
equal to or before its beginof. Thus, unlike the endpoints
theory, every interval in vector continuum has a re-
flection in the opposite direction via the back function
and intervals oriented in the forward direction (beginof
is before endof ) are defined by the forward relation. In
this theory single-point intervals, known as moments, are
defined as intervals whose beginof and endof points are
the same.

Similar to endpoints, we discovered that the following
axioms are missing from vector continuum as presented
in [1]:

(∀x) timepoint(x) ∨ timeinterval(x) (4)

(∀i, p) (beginof(i) = p) ∧ endof(i) = q ⊃

between(p, q) = i (5)

Without these axioms, there exist models that falsify the
sentence

(∀i) (back(back(i)) = i)

Hence, this sentence is not provable from
vector continuum, as Hayes claims.

Let Tvc be the theory in which vector continuum is
extended with these axioms.

Theorem 7: Tvc is definably equivalent to
Tlinear ordering ∪ Tdouble complete

Proof: Let ∆ be the following set of translation
definitions:

(∀x) point(x) ≡ timepoint(x)

(∀x) line(x) ≡ timeinterval(x)

(∀x, y)ing(x, y) ≡ ((beginof(y) = x)∨(endof(y) = x))

(∀x, y)ins(x, y) ≡ ((beginof(y) = x)∨(endof(y) = x))

(∀x, y) before(x, y) ≡ leq(x, y)

Using Prover9, we have shown that

Tvc ∪∆ |= Tlinear ordering ∪ Tdouble complete

Let Π be the following set of translation definitions:

(∀i, t) (beginof(i) = t) ≡

(ing(t, i) ∧ ((∀t′) ing(t′, i) ⊃ leq(t, t′))

∨(ins(t, i) ∧ ((∀t′) ins(t′, i) ⊃ leq(t′, t))

(∀i, t) (endof(i) = t) ≡

(ing(t, i) ∧ ((∀t′) ing(t′, i) ⊃ leq(t′, t))

∨(ins(t, i) ∧ ((∀t′) ins(t′, i) ⊃ leq(t, t′))

Using Prover9, we have shown that

Tlinear ordering ∪ Tdouble complete ∪Π |= Tvc

The definition of the class of intended structures is
slightly more complicated since we need to use two differ-
ent incidence substructures – a strict graphical incidence
structure for forward intervals and a strong graphical
incidence structure for backward intervals:

Definition 11: Mvc is the following class of structures:
M∈Mvc iff

1) M∼= P ∪ (G× S), where
a) P = 〈P,≤〉 is a linear ordering;
b) G = 〈P,G, inG〉 is a strict graphical incidence

structure;
c) S = 〈P, S, inS〉 is a strong graphical incidence

structure.
2) 〈t〉 ∈ timepoint iff t ∈ P ;
3) 〈i〉 ∈ timeinterval iff i ∈ G ∪ S;
4) 〈i〉 ∈ moment iff i ∈ S and there exists a unique

t ∈ P such that 〈t, i〉 ∈ inS ;
5) beginof(i) = t iff

• 〈t, i〉 ∈ inG and for any t′ ∈ P such that
〈t′, i〉 ∈ inG, we have t ≤ t′, or

• 〈t, i〉 ∈ inS and for any t′ ∈ P such that
〈t′, i〉 ∈ inS, we have t′ ≤ t.



6) endof(i) = t iff
• 〈t, i〉 ∈ inG and for any t′ ∈ P such that
〈t′, i〉 ∈ inG, we have t′ ≤ t, or

• 〈t, i〉 ∈ inS and for any t′ ∈ P such that
〈t′, i〉 ∈ inS, we have t ≤ t′.

7) between(t1, t2) = i iff 〈t1, i〉, 〈t1, i〉 ∈ inG∪inS.
The Representation Theorem for Tvc shows that this

definition of intended structures does characterize the
models of Tvc up to isomorphism:

Theorem 8: M∈Mvc iff M∈Mod(Tvc).
Proof: This follows from Theorem 7 and Theorem

1, together with the fact that Tdouble complete axiomatizes
the class of double complete incidence structures and
Tlinear ordering axiomatizes the class of linear orderings.

VI. Relationship between Tendpoints and Tvc

The Tendpoints and Tvc theories have the same primitive
nonlogical lexicon, and hence we can determine their
relationship using the notions of satisfiability, extension,
and independence. In particular, we use the following
notion:

Definition 12: Let T1 and T2 be theories with the
language L. The similarity of T1 and T2 is the strongest
subtheory of T1 and T2 so that for all σ, φ ∈ L:
if T1 |= σ and T2 |= φ and T 6|= σ and T 6|= φ, then either
σ ∨ φ is independent of T or it is a tautology.

Let Sim(endpoint, vc) be the theory which is equiva-
lent to Tvc with the axiom

(∀p, q) timepoint(p) ∧ timepoint(q) ⊃

(beginof(between(p, q)) = p)

∧endof(between(p, q)) = q)

replaced by
(∀p, q) before(p, q) ⊃

(beginof(between(p, q)) = p)

∧endof(between(p, q)) = q)

Theorem 9: Sim(endpoint, vc) is the similarity of
Tendpoints and Tvc.

Proof: Let backwards be the sentence

(∀i1) timeinterval(i1) ⊃ (∃i2) timeinterval(i2)

∧(beginof(i2) = endof(i1))∧(endof(i2) = beginof(i1))

Let no backwards be the sentence

(∀i2) timeinterval(i1) ⊃ ¬(∃i2) timeinterval(i2)

∧(beginof(i2) = endof(i1))∧(endof(i2) = beginof(i1))

Sim(endpoint,vc)

vector-continuumendpoints

point-continuum

backwardsno-backwards no-moment moment

Figure 1. Relationships between the time on-
tologies for points and intervals. Dotted lines
denote nonconservative extension and solid
lines denote faithful interpretation.

Let moment be the sentence

(∀t) timepoint(t) ⊃ (∃i) timeinterval(i)

∧(beginof(i) = t) ∧ (endof(i) = t)

Let no moment be the sentence

(∀t) timepoint(t) ⊃ ¬(∃i) timeinterval(i)

∧(beginof(i) = t) ∧ (endof(i) = t)

Using Prover9, we have shown

Tendpoints |= no backwards ∧ no moment

Tvector continuum |= backwards ∧moment

Using Mace4, we have shown that if disjunctions of these
sentences are not tautologies, then they are independent of
Sim(endpoints, vc).

Theorem 10: Sim(endpoint, vc) is definably equiva-
lent to the theory IQ in [12].

The next corollary is not explicitly stated in [1], but it
follows from the propositions used in the proof of Theorem
9.

Corollary 1: Tendpoints and Tvc are mutually inconsis-
tent.

The relationships between the theories is summarized
in Figure 1.

VII. Point Continuum

The point-continuum theory combines intervals and
points by defining the relation in that relates a point to
the interval it is contained in. All intervals of this theory
are oriented in the forward direction and are considered
either open, when the beginof and endof points are not
in in the interval, or closed, when the beginof and endof



points are included in in the interval. Therefore, the axioms
defining the functions beginof, endof, and between also
make the distinction between open and closed intervals.
The axiom for the function closure ensures that every open
interval has a closed interval with the same endpoints. The
relation acoao (also closed or also open) that compares
two intervals is essential for the conservative definitions
of the temporal relations meets, starts and finishes. With
the distinction between closed and open intervals, open
intervals in this theory can only meet and interval that is
closed. Therefore, if two open intervals share an endpoint
in common (where the endof one is equal to the beginof
the other) these intervals do not meet each other, but in-
stead they each meet the same closed single-point interval
known as a moment that resides between them.

The following axioms are missing from
point continuum:

(∀x) timepoint(x) ∨ timeinterval(x) (6)

(∀i) open(i) ⊃ timeinterval(i) (7)

(∀i) closed(i) ⊃ timeinterval(i) (8)

(∀i) timeinterval(i) ⊃

timepoint(beginof(i)) ∧ timepoint(endof(i)) (9)

Let Tpc be the theory in which point continuum is
extended with these axioms.

A. Relationship to the other Theories

Tpc uses a language that expands the nonlogical lexicon
of both Tendpoints and Tvc, so we need to turn to the
metatheoretic notion of relative interpretation to under-
stand the relationships among these theories 5.

Theorem 11: Tpc faithfully interprets Tendpoints.
Proof: If ∆ is the following set of translation defini-

tions:

(∀x) timepointec(x) ≡ timepointpc(x)

(∀x) timeintervalec(x) ≡ openpc(x)

(∀x, y) (beginofec(x) = y) ≡ (beginofpc(x) = y)

(∀x, y) (endofec(x) = y) ≡ (endofpc(x) = y)

then Tpc ∪∆ |= Tendpoints.
Theorem 12: Tpoint continuum faithfully interprets Tvc.

Proof: If ∆ is the following set of translation defini-
tions:

(∀x) timepointvc(x) ≡ timepointpc(x)

5Since these theories use relations with the same names, we distin-
guish them by a superscript that denotes the theory in which they are
axiomatized.

(∀x) timeintervalvc(x) ≡ closedpc(x)

(∀x, y) (beginofvc(x) = y) ≡ (beginofpc(x) = y)

(∀x, y) (endofvc(x) = y) ≡ (endofpc(x) = y)

then Tpc ∪∆ |= Tvc.

Notice that intervals in Tendpoints are interpreted as
open intervals in Tpc and intervals in Tvc are interpreted
as closed intervals. In this sense, the the inconsistency
between Tendpoints and Tvc appears as the disjointness of
the classes of open and closed intervals in Tpc.

B. Representation Theorem for Tpc

As the relationships between the three theories indicate,
the verification of Tpc combines the representation theo-
rems for both Tendpoints and Tvc.

Theorem 13: Tpc is definably equivalent to
Tlinear ordering ∪ Tstrict graphical ∪ Tdouble complete

Proof: We can use the translation definitions in The-
orems 11 and 12 and the representation theorems for
Tendpoints (Theorem 6) and for Tvc (Theorem 8) to show
that

Tpc ∪∆ |=

Tlinear ordering ∪ Tstrict graphical ∪ Tdouble complete

For the other direction, we can use the translation defini-
tions from Theorems 5 and 7.

The characterization of the models of Tpc combines the
classes of models that were introduced in Definitions 10
and 11:

Definition 13: Mpc is the following class of structures:
M∈Mpc iff

1) M∼= P ∪O ∪ (G× S), where
a) P = 〈P,≤〉 is a linear ordering,
b) O = 〈P,O, inO〉 is a strict graphical incidence

structure,
c) G = 〈P,G, inG〉 is a strict graphical incidence

structure,
d) S = 〈P, S, inS〉 is a strong graphical incidence

structure;
2) 〈t〉 ∈ timepoint iff t ∈ P ;
3) 〈i〉 ∈ timeinterval iff i ∈ O ∪G ∪ S;
4) 〈i〉 ∈ open iff i ∈ O;
5) 〈i〉 ∈ closed iff i ∈ G ∪ S;
Theorem 14: M∈Mpc iff M∈Mod(Tpc).

Proof: This follows from Theorem 13 and Theorem
1, together with the fact that Tstrict graphical axioma-
tizes the class of strict graphical incidence structures,
Tdouble complete axiomatizes the class of double complete
incidence structures and Tlinear ordering axiomatizes the
class of linear orderings.



VIII. Summary

Three time ontologies first introduced by Hayes in [1]
(endpoints, vector continuum, and point continuum)
axiomatize both timepoints and timeintervals. We have
provided a characterization of the intended structures for
these ontologies up to isomorphism, and we have shown
that these intended structures are isomorphic to the models
of the ontologies. This characterization constitutes the
verification of the ontologies.

In the course of proving the representation theorems,
we identified axioms that were missing from each theory,
and hence allowed unintended models. We also provided
a complete characterization of the relationships among
the theories. In particular, we specified the the similarity
between endpoints and vector continuum, and demon-
strated that point continuum can faithfully interpret the
other two theories.

We can extend this methodology of ontology verifica-
tion to other upper ontologies (such as SUMO, Cyc, and
OWL-Time) that use similar first-order temporal theories
for timepoints and intervals.
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