
On the Computational Complexity of the
Reachability Problem in UML Activity Diagrams

Xing Tan
Semantics Technology Laboratory

Department of Mechanical and Industrial Engineering
University of Toronto

Email: xtan@mie.utoronto.ca

Michael Gruninger
Semantics Technology Laboratory

Department of Mechanical and Industrial Engineering
University of Toronto

Email: gruninger@mie.utoronto.ca

Abstract—The reachability problem, the problem of checking
whether certain node can be reached from some initial settings
such that all restrictions on flow of control are satisfied, arises
frequently in various applications of Unified Modeling Language
activity diagrams. However, the complexity of the problem, or
in fact the complexity of any general problem in UML activity
diagrams, has yet to be investigated. Towards this initiative, we
specify a class of diagrams where the reachability problem is
PSPACE-complete. However, if one further condition is applied,
it can be shown that the problem is NP-complete.

I. INTRODUCTION

The Unified Modeling Language (UML), as a general
purpose graphical language, has been widely used to describe
the structural and behavioral information in various dynamical
systems. It includes up to 13 different types of diagrams to
meet different requirement in specifying different aspects of a
system. Among them, activity diagrams are suitable to show
the overall flow of control in a system and are applied in
a variety of domains such as business processes modeling,
workflow modeling, and software processes modeling.

One of the most essential problems associated with an
activity diagram is the reachability problem: checking whether
certain node can be reached from some initial settings such
that all restrictions on flow of control are satisfied. Since it
corresponds directly to checking the executability of the real
world process that is specified visually by the diagram, dealing
with the reachability problem is inevitably an important issue
that has to be resolved properly to facilitate systematic design,
and efficient use of activity diagrams. Consequently, a deeper
understanding of the characteristics of the reachability problem
is required. We approach the problem by taking a close look
on the computational properties of deciding the reachability
problem in two classes of activity diagrams and our results
show that the problem in general is intrinsically hard to solve.

Although for each graphical notation in UML, the Object
Management Group (OMG), the distributor of UML specifi-
cations, provides a textual statement to specify its syntax and
semantics [6], the specifications, as observed and addressed by
others ([1], for example), are quite general and subject to open
interpretation. Given this, substantial efforts have been done
in proposing semantic foundations for activity diagrams ([1]
and [7], for example). Among them, the line of work [7], [?]

and [9] provides Petri-nets-like semantics for activity diagrams
by mapping them into Petri-nets. We adopt this approach in
essence. However, as indicated in Section III, we apply the
concepts of markings directly in the activity diagrams. In doing
so, the dynamics of the activity diagrams can be illustrated in
a clear and straightforward manner.

Since, at its complete level, UML activity diagrams support
modeling traditional structured programming constructs such
as sequences, loops and conditionals, being able to decide
whether a node is reachable in these diagrams would imply
being able to decide if a full programming language would
halt, it is clear that the reachability problem is undecidable
in general. Hence, our complexity analysis is carried out on
the intermediate level activity diagrams where the line of
tractability boundary will be drawn. At this level, only basic
control flow, such as sequencing, branching, and concurrency,
is allowed.

By simulating a Nondeterministic Linear Space Automaton
([5], page 175, as a reference, see [5] and [10] for definition of
general Turing machine) as a k-bounded (i.e., at any time, any
node of the diagrams can not contain more than k tokens; also
called as 1-safe, if k = 1) activity diagram, we show that the
reachability problem is PSPACE-hard for that class of activity
diagrams. In addition, by transforming from the NP-complete
One-in-Three 3SAT problem ([5], page 259), we show that the
problem is NP-complete if certain form of acyclicity is further
restricted to 1-safe diagrams.

The remainder of this paper is organized as follows. Def-
initions for UML activity diagrams are included in the sub-
sequent Section III. Results on computational complexity of
the reachability problems in two classes of activity diagrams
are covered in the main part Section IV. Section V is a brief
summary.

II. UML ACTIVITY DIAGRAMS

Graph-theoretic definitions to describe UML activity dia-
grams and the concept of markings to capture the dynamics
of activity diagrams are introduced in Section II.A and Section
II.B, respectively.

A. Basic Definitions

Definition 1: An UML activity diagram is a pair (N,E),
where N is a finite set and E is a binary relation on N . The
elements in N are called nodes. Each node belongs to one
and only one of the following types: Ini, Final, Branch,
Merge, Fork, Join, or Action. The elements in E are called
edges. The edge set E consists of ordered pairs of nodes. That
is, an edge is a set {u, v}, where u, v ∈ N and u 6= v. By
convention, we use the notation (u, v) for an edge, rather than
the set notation {u, v}.
If (u, v) is an edge in an activity diagram, we say that (u, v)
is incident from or leaves node u and is incident to or enters
node v. Given a node u ∈ N , the set •u = {v|(v, u) ∈ E} is
the pre-set of u, where each v is the input of u, and the set
u• = {v|(v, u) ∈ E} is the post-set of u, where each v is the
output of u. It is required that

|•u|

= 0 if n is the Ini node
= 1 if n is the Final node
= 1 if n is a Branch node
≥ 2 if n is a Merge node
= 1 if n is a Fork node
≥ 2 if n is a Join node
= 1 if n is an Action node

and

|u•|

= 1 if n is the Ini node
= 0 if n is the Final node
≥ 2 if n is a Branch node
= 1 if n is a Merge node
≥ 2 if n is a Fork node
= 1 if n is a Join node
= 1 if n is an Action node

B. Markings and Reachability Problem

Definition 2: A marking of a diagram (N,E) is a mapping
in the form MK : N → N , to indicate the distribution of
tokens on the nodes of the diagram; it can be represented as
an vector MK(n1), . . . ,MK(nm) where n1, . . . , nm is an
enumeration of the node set N and for all i such that 1 ≤ i ≤
m, MK(ni) tokens are assigned to node ni.
A node n is marked at the marking MK if MK(n) > 0. A
marked node u is further enabled if it is accepted by every
node v ∈ u•. Any non-Join node v such that v ∈ u• will
accept u as long as u is marked. A type Join node v such
that v ∈ u• will accept u if and only if, for every node t such
that t ∈ •v, t is marked.

The firing of an enabled node u at MK leads to the
successor marking MK ′ (Written as MK

u=⇒ MK ′). More
precisely,

1) if u is a Branch node, then for every node n ∈ N ,

MK ′(n) =

 MK(n)− 1 if n = u
{MK(n) + 1,MK(n)} if n accepts u
MK(n) otherwise

and we also have,
∑

ni∈u• MK(ni) = 1.

2) if u is a non-Branch node, then for every node n ∈ N ,

MK ′(n) =

 MK(n)− 1 if n = u
MK(n) + 1 if n accepts u
MK(n) otherwise

In other words, after the firing of u, a token is removed
from u and a token is added to the only node (if u is
of type Ini, Action, Merge, Join), each node (if u is
of type Fork), one and only one node (if u is of type
Branch), in the post-set of u. There is no need to fire
a node with type Final.

3) if a token fired by u is accepted by a Join node n,
it necessarily implies the simultaneous firings of all
marked node ui such that ui ∈ •n. That is,

a) their firings are atomic, and
b) any two permutated firing sequences of the ele-

ments in •n are equivalent,
c) one token is assigned to the node Join,
d) for each ui ∈ •n, a token is removed.

In this case, we write MK
−→u=⇒ MK ′, where −→u stands

for a linearization of all elements in •u.
The firing sequence σ = n1, ..., nm is a sequence of nodes
in N (again, note that some subsequence of σ might be
inseparable and enabled by one Join node). For particular σ
and MK, σ is legal at MK if there are marking sequence
MK0,MK1, ...,MKm such that MK = MK0, M0

n1=⇒
MK1, ..., MKm−1

nm=⇒ MKm (written as MK
σ=⇒ MKm).

Also, We write MK
∗=⇒ MK ′ if there exists a firing sequence

σ such that MK
σ=⇒ MK ′.

The reachability set of an activity diagram instance in the
form of a 3-tuple (N,E, MK0), where (N,E) is the diagram
and MK0 is its initial marking, is the set of all MK ′ such
that MK0

∗=⇒ MK ′ in (N,E).
Definition 3: The reachability problem (REACH) for an

(N,E, MK0) is to decide whether some arbitrary final mark-
ing MKfinal is in the reachability set of the instance.
An instance (N,E, MK0) is cyclic, or reversible, if there
exists a firing sequence σ in the reachability set such that
some node, say ni, appears more than once in σ. It is acyclic,
or irreversible, otherwise. An instance (N,K,MK0) is k-
bounded if the number of tokens of any node n ∈ N at any
MK in the reachability set is bounded by k; it is 1-safe if
k = 1. Without loss of generality, we can assume that REACH
is to test, in an activity diagram with an unique Ini node and
Final node where the initial MK0 contains a unique token
in Ini, if the token can reach Final. Hence,

Definition 4: OSafe-REACH is the reachability problem
for 1-safe activity diagrams.

Definition 5: KBounded-REACH is the reachability prob-
lem for k-bounded activity diagrams.

Definition 6: A-OSafe-REACH is the reachability problem
for acyclic, 1-safe activity diagrams.

Figure 1 is a pictorial representation of an instance of
(N,E, MK0), where
N = {Ini, F in,A, B,C,D, F1, F2, B, M, J},

A B C D

Branch

Fork0 Fork1

Merge

Ini

Final

Join

Fig. 1. An example of an intermediate UML activity diagram

E = {(Ini,B), (B,F0), (B,F1), (F0, A), (F0, B), (F1, C),
(F1, D), (A, J), (B,M), (C,M), (D,J), (M,J), (J, F in)},
and {MK0(Ini) = 1,MK0(ni) = 0 for all other nodes}.

In this example, the REACH problem involves finding a
firing sequence from node Ini that will deliver a token into
the node Fin. Note that Fin is not reachable from Ini, as
no matter which branch Ini chooses, flow of control can only
arrive at two of the three branches entering the node J , making
the occurrence of J impossible. However, Fin is certainly
reachable if the node J is replaced with a node of type Merge.

III. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of OSafe-
REACH and A-OSafe-REACH are presented. The PSPACE-
hard part of the proof in Theorem 1 is particularly inspired by
a similar construction showing that the reachability problem
in a 1-safe Petri nets is PSPACE-hard [4].

Theorem 1: The OSafe-REACH problem is PSPACE-
complete.

Proof: We first prove OSafe-REACH is in PSPACE
by showing that it is in NPSPACE. Suppose we have
an instance of OSafe-REACH in the form of 4-tuple
(G, MK0, Ini, F inal), where G = (N,E) is an activity
diagram, MK0 is the initial marking of G, and Ini and Final,
respectively, is the initial and final node in G. Since G is 1-
safe, the maximal number of different markings of G is 2m,
where m = |N |. Hence, if there ever exists a firing sequence
σ such that MK0

σ=⇒ MK ′ and MK ′ marks Final, we
must have |σ| ≤ 2m, i.e., MK ′ shall be reached in 2m

steps. Otherwise, some marking must be repeated in σ and
the subsequence between any two repeated markings can be
removed in σ to obtain a shorter σ′ whereas MK0

σ′

=⇒ MK ′

also holds.
As such, we propose a nondeterministic algorithm that

decides OSafe-REACH as follows:

On input (G, MK0, F inal):

1) Nondeterministically select a firing sequence σ, where
|σ| ≤ 2m.

2) Firing σ from MK0 to obtain a MK ′, i.e., MK0
σ=⇒

MK ′. (Simply reject if σ is not completely firable from
MK0.)

3) Accept if the Final node is marked in MK ′, reject
otherwise.

The algorithm hence is bounded by nondeterministic linear
space. As it precedes, a size m stack is required to maintain the
current marking. But by virtue of Savitch’s theorem, OSafe-
REACH is also in PSPACE.

To show that OSafe-REACH is PSPACE-hard,
suppose we have an NLBA T in the form
(Q,Γ,Σ, δ, qini, Qaccept, Qreject, $) and is bounded by the
size of its input string, whereas {Q = q1, q2, . . . , qm} is the set
of states and q1 = qini and qaccept, qreject ∈ Q, Σ is the set of
input symbols, Γ = {a1, a2, . . . , ap} is the set of tape symbols,
Γ ⊇ Σ, and $ = a1. Given a sentence w = $w1w2 . . . wn$ in
$Σ∗$, we will construct in polynomial time an instance of
activity diagram OSafe(T) = (N,E, MK0, Ini, F inal) as
follows:

1) Ntable ⊆ N and Ntable = {LocationSymboli,j |0 ≤
i ≤ n + 1, 1 ≤ j ≤ p} ∪ {LocationStatei,j |0 ≤ i ≤
n + 1, 1 ≤ j ≤ m} ∪ {Ini, F inal}, that is,

a) The 2-dimensional table LocationSymbol marked
with w tokens is used to maintain the current
content in the tape of T and the 2-dimensional table
LocationState with one token is used to indicate
the current state. In other words, the automaton
T is in state qj scanning location i with the
symbol k on i if and only if there are one token
at LocationSymboli,k and LocationStatei,j , re-
spectively.

b) a token at node LocationSymbol0,1, and at
LocationSymboln+1,1, corresponds to the symbol
“$” at the left end, and the right end of the input
string of T .

c) each ni ∈ Ntable is an action node.
2) Eini ⊆ E and Eini =

{(Forkini, LocationSymboli,j)|input has symobl j at i}
∪ {(Forkini, LocationSymbol0,1} ∪
{(Forkini, LocationSymboln+1,1} ∪ {(Ini, Forkini},
that is, a token in Ini will be forked into elements of
the table, reflecting the input for T .

3) The initial marking MK0(T) simply assigns one token
at Ini.

4) If a state is in Qaccept, then, it will enter the node Final.
(See Fig. 2 for an example of the first four steps).

5) For each transition function δi ∈ δ such that δi = {(qs×
at) −→ (qu×av×L), (qs×at) −→ (qw×ar×R)} and
for each location j such that 1 ≤ j ≤ n, we construct

a) a subgraph CpntLSSi,j,s,t = (CpntNi, CpntEi),
where CpntNi ⊆ N such that CpntNi =
{Forki, Joini} and CpntEi ⊆ E such that Ei =
{(Forki, LocationStatej,s), (Forki, LocationSymbolj,t),
(LocationStatej,s, Joini), (LocationSymbolj,t, Joini)},
constructs a component corresponding to: T is at

Location

Location

0 1 n n+1

0 n+1... ...

a1
...
a8
a9
...
a14
a_p

(ini)q1
...
q_accept
...
q_m

0 n+1

NLSA

a1 a14 a9 ... a8 a1

Input

...

...

...

...

Final

Ini

Symbol
State

Merge

Fig. 2. An Example of an initial marking in an OSafe(T)

a_t q_s

a_v q_u a_r q_w

Fig. 3. An example of a nondeterministic transition function in OSafe(T)

state s, reading symbol t at location j.
b) The subgraphs CpntLSSi,j−1,s,t, and

CpntLSSi,j+1,s,t, are constructed similarly.
c) A branch node Branchi ∈ N is introduced to

simulate the nondeterministic transition of δi. More
specifically, CpntLSSi,j,qu,av enters Branchi

and Branchi leaves for CpntLSSi,j−1,qs,at
and

CpntLSSi,j+1,qw,ar (see Fig. 3 for an example).
6) Transition functions dealing with boundary cases can be

treated similarly as in the step above.
7) In T , transition function for a state qi might include

reading different symbols, say aj or ak, for example.
Accordingly, the construction will have to deal with two
components, say CpntLSSi,j,k,l and CpntLSSi,j,k,m,
which share the node LocationStatej,k. In this case, a
Merge node is added before the node to take a token
from either component and a Branch node is added
after the node to return the token to the component.
Since any T can not in the same time at different state,
or location, it is impossible for this Merge or Fork
node to have multiple tokens thus the 1-safe property is
maintained. (see Fig. 4 for an illustration).

8) N (and E) does not contain any other nodes (or edges,
respectively).

Since any nondeterministic move in T corresponds precisely to
a nondeterministic firing of a token in OSafe and vice versa, it
is obvious that T accepts w if and only if OSafe(T) can reach
the Final node. Finally, we complete this proof by showing

I a_j I q I a_k

Fig. 4. An example of a LocationState node corresponding to multiple
Components in OSsafe(T)

that the transformation is bounded by O(n|Q · Γ|2). Since
in the worst case, each location involves a nondeterministic
transition function that deals with every symbol in Γ for every
state in Q and the number of nodes created is bounded thus
by n · |Q| · |Γ| · |Q| · |Γ| · 2.
Similarly we can prove

Corollary 2: The KBounded-REACH problem is PSPACE-
complete.

Proof: Based on the fact that, the total number of
markings in a k-bounded activity diagram is bounded by[(∑k

i=1 i
)

+ 1
]m

, a nondeterministic algorithm can be pro-
posed accordingly, ensuring that the problem is also in
PSPACE. The same PSPACE-hard proof from Theorem 1 can
be applied here as a 1-safe diagram is certainly k-bounded.

Theorem 3: The A-OSafe-REACH problem is NP-compete.
Proof: It is easy to see that A-OSafe-REACH is in NP .

Since we know that, if the Final node in such an acyclic
diagram is reachable, the firing sequence starting from Ini
and reaching it is bounded by the size of the nodes in the
diagram |N |. A nondeterministic algorithm need only guess a
firing sequence and check in polynomial time if it satisfies all
constraints and delivers the token to the Final node.

To show that A-OSafe-REACH is NP-hard, we will
transform One-In-Three 3SAT to A-OSafe-REACH. Sup-
pose we have an arbitrary instance of One-In-Three
3SAT, where U = {u1, u2, ..., un} is a set of vari-
ables and C = {c1, c2, ..., cm} such that |cj | = 3
for 1 ≤ j ≤ m is the set of clauses. We construct
an activity diagram AOSafeReach(OneInThree3sat) =
(N,E, MK0, Ini, F inal) with the following steps.

1) For each variable ui and its negation ūi we construct an
auxiliary variable component in which aBranch node
called Bui

enters the Action node ui and the Action
node ūi before merging into a Merge node Mui .

2) For each clause Cj = [pj1, pj2, pj3] we construct an
auxiliary clause component in which a Branch node
called BCj

enters three branches corresponding to ac-
tions pj1, pj2, pj3 before merging into a Merge node
called MCj .

3) The diagram contains a Fork node Fork and a Join
node Join, where Ini enters Fork, Join enters Final.
Also, Fork enters every node Bui for 1 ≤ i ≤ n and
every node BCj for 1 ≤ j ≤ m, whereas every Mui for

a ~a b ~b c ~c d ~d b c ~c d
ba

Fig. 5. Polynomial time transformation from an One-In-Three 3SAT Instance
to an activity diagram

1 ≤ i ≤ n and every MCj for 1 ≤ j ≤ m enters Join.
4) In the constructed diagram, we also need to indicate

which literals occur in which clauses in the One-In-
Three 3SAT instance. Assume literal pij represents a
negation of a variable ūk (or a variable uk, but the
construction is similar), we now add an extra fork
node Forkūk

such that Buk
enters Forkūk

instead (not
directly to ūk) and Forkūk

enters ūk. Additionally, on
the corresponding clause component where pij belongs
to, Forkūk

and pij enters a new Join node Joinpij and
Joinpij enters MCj .

5) The initial marking MK(OneInThree3SAT) simply
assigns one token at Ini.

An illustration of this construction is given in figure 5, where
the One-In-Three 3SAT instance is C = {[a, b, c], [b,¬c, d]}.

We now show that the node Final is reachable from Ini
in the diagram AOSafeReach(OneInThree3SAT), if and
only if, OneInThree3SAT , the instance of the problem is
one-in-three satisfiable. Suppose first that t : U → {T, F}
is a one-in-three truth assignment satisfying C. Based on t,
we can construct a firing sequence δ such that, 1) for each
variable ui, if t(ui) = True (or t(ūi) = True), the node ui

(or ūi) should be included in the first segment of δ (relative
order between uis does not matter); 2) for each literal pij , if
p(ij) = True, the node pij should be included in the second
segment of δ (relative order between uis does not matter). It
is easy to verify that firing of δ constructed in this way can
reach Final from Ini in the constructed diagram. Conversely,
if δ is a reachable firing sequence in the diagram, for each i
such that 1 ≤ i ≤ n, Bui and Mui will ensure that only

one of ui or ūi is chosen where as BCi
and MCi

will ensure
that only one of pij in Cj is chosen , but this constructs a
One-In-Three truth assignment t for the 3SAT problem. It is
required that each of the clause component should merge to
the Fork node, which means that t in the same time is actually
a satisfiable assignment. The transformation can be verified as
a polynomial time transformation without difficulty, since the
size of constructed diagram is bounded by a polynomial mn,
which is the size of the 3SAT instance.

IV. SUMMARY

Starting by defining activity diagrams as directed graphs
with typed nodes, and introducing the concept of markings di-
rectly into the UML activity diagrams, we have shown that the
reachability problem in activity diagrams is at least PSPACE-
hard. This result is significant since the problem is one of the
most important problems associated with the design and use
of activity diagrams. Given the popular use of the diagrams,
an extensive study of the complexity of all typical problems
associated with activity diagrams is obviously necessary. In
the future, we are interested in continuing this line of work
by defining subclasses of the diagrams where the reachability
problem is tractable and investigating new problems other than
the reachability problems on these subclasses.

Finally, we emphasis that, although there exist extensive
complexity results of reachability problems for 1-safe Petri-
nets (see [2] for example), those results can not, by any means
directly, be used to obtain the complexity results reported in
this paper. Since there does not exist a trivial way to correctly
map a Petri net into an activity diagram even if the reversed
direction is obviously practical (see [7] again).

REFERENCES

[1] Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML
activity diagrams. AMAST 2000, Iowa City, Iowa, USA (2000) 293–308

[2] Cheng, A., Esparza, J, Palsberg, J: Complexity results for 1-safe nets.
Theoretical Computer Science 147 (1995) 117–136

[3] Esparza, J: Decidability and complexity of Petri Net problems- an
introduction, Problems-An Introduction, Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, Lecture Notes in Computer Science.
1491 (Springer-Verlag, 1998) 374-428.

[4] Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems
in Petri nets. Theoretical Computer Science 4 (1977) 277–299

[5] Garey, M.R., Johson, D.S.: Computers and intractability - a guide to
NP-completeness. W.H. Freeman and Company, Cambridge, MA, USA
(1979)

[6] OMG: Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. (2007)

[7] Störrle, H.: Semantics of control-flow in UML 2.0 Activities. VLHCC
’04: Proceedings of the 2004 IEEE Symposium on Visual Languages -
Human Centric Computing, Washington, DC, USA (2004) 235–242

[8] Störrle, H.: Semantics and verification of data flow in UML 2.0
Activities. Electronic Notes in Theoretical Computer Science 127 (2005)
35–52

[9] Störrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0
Activities. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software
Engineering. LNI., GI, 64, (2005) 117–128

[10] Sipser, M.: Introduction to the theory of computation, Second Edition.
PWS Publishing Company, Boston, MA, USA (2006)

