
A First-Order Cutting Process Ontology
for Sheet Metal Parts

Michael GRÜNINGER a, Arnaud DELAVAL b

a Department of Mechanical and Industrial Engineering, University of Toronto, Toronto,
Ontario, Canada M5S 3G8

b IFMA Les Cezaux BP 265 63175 Clermont Ferrand, France

Abstract. The semantic integration of manufacturing systems has been impeded by
the lack of rigorous ontologies for specific domains of manufacturing processes and
resources. In this paper we present a cutting process ontology for 2D shapes such as
sheet metal parts, axiomatized in first-order logic. This ontology is an extension of
the ontology of ISO 18629 (Process Specification Language) and an earlier shape
ontology first used to support object recognition. The full ontology consists of an
axiomatization of all possible ways to change a surface as the result of a cutting
process and a taxonomy of cutting processes. All component ontologies are verified
using representation theorems.

Keywords. manufacturing, ontologies, first-order logic, Process Specification
Language

1. Motivation

Although 3D machining receives a great deal of attention, manufacturing of two-
dimensional parts is also widespread. The cutting of sheet metal has applications in car
bodies, airplane wings, medical tables, and construction materials. Similar processes are
used not only in metal machining but also in the cutting of materials ranging from pa-
per to fabric. Earlier work in the application of knowledge representation to sheet metal
manufacturing processes has been restricted to approaches that are not based on a formal
logic. The work in [6] uses a rule-based approach to capture the relationship between
particular features of a sheet metal part and the possible operations that can be performed
to produce the desired features. Approaches such as [7] specify grammar rules to define
the slitting operations that can be done on any given sheet metal plate.

One drawback of this earlier work is the lack of sharability and reusability for the
specifications of the manufacturing processes such as cutting or punching. Rather than
a set of rules, we need a logical framework that can support both consistency-checking
(to verify plans composed of cutting processes) as well as automated inference to reason
about the consequences of particular cutting processes (for example, can one perform a
different cutting process within a plan and still achieve a particular feature within the
final product).

Another desirable application that is not supported by earlier work is the retrieval of
cutting operations and partial plans from process repositories. Such repositories presume
the existence of a classification of cutting processes. Moreover, this cannot be an ad hoc

classification; it should be one that is provably correct and complete with respect to the
underlying definitions of cutting processes.

To address the above shortcomings and additional requirements, we propose an on-
tology for cutting processes in which the class definitions and other constraints are ax-
iomatized in first-order logic. If we consider the class of manufacturing processes defined
as activities that change shape, then cutting processes are the subclass of such shape-
changing processes in which at least two new edges are created as a result of an occur-
rence of the process. Consequently, the cutting process ontology presented in this paper
is based on two existing first-order ontologies – the ontology of 2D shapes introduced
in the CardWorld Ontology [4], and the ontology of ISO 18629 (Process Specification
Language [3], [2]). The Cutting Process Ontology consists of three sets of first-order
axioms:

• Shape Ontology
• Shape Cutting Ontology
• Cutting Process Taxonomy

In the remainder of this paper, we will consider each of the first-order ontologies
within the Cutting Process Ontology. We not only present the axioms within each ontol-
ogy, but we also demonstrate the verification of the axioms with respect to their intended
models.

2. PSL Ontology

The purpose of PSL-Core ([3], [2]) is to axiomatize a set of intuitive semantic primitives
that is adequate for describing the fundamental concepts of manufacturing processes.
Consequently, this characterization of basic processes makes few assumptions about their
nature beyond what is needed for describing those processes, and the Core is therefore
rather weak in terms of logical expressiveness.

Within PSL-Core 1, there are four kinds of entities required for reasoning about
processes – activities, activity occurrences, timepoints, and objects. Activities may have
multiple occurrences, or there may exist activities which do not occur at all. Timepoints
are linearly ordered, forwards into the future, and backwards into the past. Finally, ac-
tivity occurrences and objects are associated with unique timepoints that mark the begin
and end of the occurrence or object.

Within the PSL Ontology, the theory Tocctree extends the theory of Tpslcore
2. An oc-

currence tree is a partially ordered set of activity occurrences, such that for a given set of
activities, all discrete sequences of their occurrences are branches of the tree. An occur-
rence tree contains all occurrences of all activities; it is not simply the set of occurrences
of a particular (possibly complex) activity. Because the tree is discrete, each activity oc-
currence in the tree has a unique successor occurrence of each activity. Every sequence
of activity occurrences has an initial occurrence (which is the root of an occurrence tree).

1The axiomatization of PSL-Core in CLIF (Common Logic Interchange Formt) can be found at
http://www.mel.nist.gov/psl/psl-ontology/psl_core.html

2The axioms of Tocctree in CLIF can be found at http://www.mel.nist.gov/psl/psl-ontology/
part12/occtree.th.html

Most applications of process ontologies are used to represent dynamic behaviour in
the world so that intelligent agents may make predictions about the future and explana-
tions about the past. In particular, these predictions and explanations are often concerned
with the state of the world and how that state changes. The PSL core theory Tdisc_state is
intended to capture the basic intuitions about states and their relationship to activities3.

Within the PSL Ontology, state is changed by the occurrence of activities. Intuitively,
a change in state is captured by a state that is either achieved or falsified by an activity
occurrence. We therefore use the prior relation to specify the properties (known as flu-
ents) that are intuitively true prior to an activity occurrence and also the holds relation
that specifies the fluents that are intuitively true after an activity occurrence.

Furthermore, state can only be changed by the occurrence of activities. Thus, if some
state holds after an activity occurrence, but after an activity occurrence later along the
branch it is false, then an activity must occur at some point between that changes the
state. This also leads to the requirement that the state holding after an activity occurrence
will be the same state holding prior to any immediately succeeding occurrence, since
there cannot be an activity occurring between them.

3. Shape Ontology

The Shape Ontology (Tshape) is based on the CardWorld Ontology [4], which is a first-
order ontology for 2D-object recognition in scenes with occlusion and images with noise.
In the axiomatization of the Shape Ontology (see Figures 1 and 2), we focus on the
mereotopological relations (i.e. parthood and connection) rather than geometric relations
(such as relative alignment and length of segments, or the notions of curvature or surface
area).

3.1. Axiomatization

There are three sorts of objects in the domain – surfaces, edges, and points. Every point
is part of some edge and every edge is part of a unique surface. Every surface contains
at least two edges and every edge contains at least two points. A vertex is a point that is
part of two edges, and only two edges may meet at a point.

In the original CardWorld Ontology, the objects such as surfaces, edges, and points
were represented as classes, and the relationships between these objects were represented
by relations. On the other hand, we need to be able to represent how properties of sur-
faces, edges, and points can change as the result of activity occurrences. Moreover, we
need to be able to capture the creation of new surfaces, edges, and points.

Within the PSL Ontology, properties of the world that change as the result of activity
occurrences are represented as fluents. Consequently, all of the relations in the original
CardWorld Ontology become fluents in the Shape Ontology. Thus, the three classes of
objects become the unary fluent functions sur f ace(x), edge(x), and point (x), since
new surfaces, edges, and points may be created by an activity. The binary fluent function
part (x, y) specifies the containment relationships between the elements of surfaces. The
ternary fluent function meet (e1, e2, v) specifies the relationship between two edges that

3The axioms of Tdisc_state in CLIF can be found at http://www.mel.nist.gov/psl/
psl-ontology/part12/disc_state.th.html

meet at a vertex (common point). The unary fluent function outer(e) distinguishes edges
that are part of a hole within a surface from those edges that are part of the outer bound-
ary of the surface. Finally, the binary fluent function connected(e1, e2) captures the re-
lationship between edges that are part of the same boundary within a surface, whether
this is the outer boundary or the boundary of a hole.

Within the Cutting Process Ontology, the axioms of the Shape Ontology are state
constraints, that is, sentences that must be true prior to any activity occurrence. By the
axioms of the PSL Ontology, these sentences also hold after any activity occurrence in
the occurrence tree, since they cannot be falsified by any activity occurrence.

3.2. Verification of the Shape Ontology

The ontology is verified by providing a complete characterization of all models of the
axioms up to isomorphism. One approach to this problem is to use representation theo-
rems – we evaluate the adequacy of the ontology with respect to some well-understood
class of mathematical structures (such as partial orderings, graph theory, and geometry)
that capture the intended interpretations of the ontology’s terms. Given the definition of
some class of structures M, we prove that the class exists and is nonempty, which also
provides a characterization of the structures in the class up to isomorphism. We prove
that every structure in the class is a model of the ontology and that every countable model
of the ontology is isomorphic to some structure in the class.

To formally capture these intuitions for the Shape Ontology, we first define a few
classes of combinatorial structures [1] which will be the building blocks of models for
the ontology.

Definition 1 A tripartite incidence structure is a tuple G = (�1, �2, �3, I), where
�1, �2, �3 are pairwise disjoint sets such that I ⊆ (�1 ×�2)∪ (�1 ×�3)∪ (�2 ×�3).
Two elements of G that are related by I are called incident. A flag of G is a set of elements
of �1 ∪ �2 ∪ �3 that are mutually incident.

Using these definitions, our intuitions tell us that scene elements should form tripar-
tite incidence structures in which all maximal flags have three elements, since all objects
should be part of some surface, i.e., there should not exist any isolated edges or points.

Definition 2 A shape structure is a tripartite incidence structure

S = 〈S, E, P, part〉

such that all elements of E are elements of two maximal flags in S which contain a unique
element in S.

The existence of shape structures is established by the following theorem, which
also provides a characterization up to isomorphism:

Theorem 1 A tripartite incidence structure

O = 〈S, E, V, part〉

is a shape structure iff it is isomorphic to the incidence structure 〈P(G), G, V, ∈〉 in
which G is a set of cyclic graphs with vertices V and P(G) is a partitioning of G.

∀x, o ¬(prior(point (x), o) ∧ prior(edge(x), o)) (1)

∀x, o ¬(prior(point (x), o) ∧ prior(sur f ace(x), o)) (2)

∀x, o ¬(prior(edge(x), o) ∧ prior(sur f ace(x), o)) (3)

(∀x, s, o) prior(part (x, s), o) ∧ prior(sur f ace(s), o) ⊃ ¬prior(sur f ace(x), o) (4)

(∀x, e, o) prior(part (x, e), o) ∧ prior(edge(e), o)

⊃ ¬prior(sur f ace(x), o) ∧ ¬prior(edge(x), o) (5)

(∀x, p, o) prior(part (x, p), o) ∧ prior(point (p), o)

⊃ ¬prior(sur f ace(x), o) ∧ ¬prior(edge(x), o) ∧ ¬prior(point (x), o) (6)

(∀x, s, o) prior(part (s, x), o) ∧ prior(sur f ace(s), o)

⊃ ¬prior(sur f ace(x), o) ∧ ¬prior(edge(x), o) ∧ ¬prior(point (x), o) (7)

(∀x, e, o) prior(part (e, x), o) ∧ prior(edge(e), o)

⊃ ¬prior(edge(x), o) ∧ ¬prior(point (x), o) (8)

(∀x, p) part (p, x) ∧ point (p) ⊃ ¬point (x) (9)

(∀e, s, v, o) prior(edge(e), o) ∧ prior(sur f ace(s), o) ∧ prior(part (e, s), o)

∧prior(part (v, e), o) ⊃ prior(part (v, s), o) (10)

(∀x, o) prior(edge(x), o) ⊃ (∃s) prior(sur f ace(s), o) ∧ prior(part (x, s), o) (11)

(∀x, o) prior(point (x), o) ⊃ (∃e) prior(edge(e), s) ∧ prior(part (x, e), o) (12)

(∀v, s1, s2, o) prior(part (v, s1), o) ∧ prior(part (v, s2), o) ∧ prior(point (v), o)

∧prior(sur f ace(s1), o) ∧ prior(sur f ace(s2), o) ⊃ (s1 = s2) (13)

(∀e, s1, s2, o) prior(part (e, s1), o) ∧ prior(part (e, s2), o) ∧ prior(edge(e), o)

∧prior(sur f ace(s1), o) ∧ prior(sur f ace(s2), o) ⊃ (s1 = s2) (14)

(∀s, o) prior(sur f ace(s), o) ⊃ (∃e1, e2, e3) prior(edge(e1), o) ∧ prior(edge(e2), o)

∧prior(edge(e3), o) ∧ (e1 6= e2) ∧ (e1 6= e3) ∧ (e2 6= e3)

∧prior(part (e1, s), o) ∧ prior(part (e2, s), o) ∧ prior(part (e3, s), o) (15)

(∀e, o) prior(edge(e), o) ⊃ (∃p1, p2) prior(point (p1), o) ∧ prior(point (p2), o)

∧(p1 6= p2) ∧ prior(part (p1, e), o) ∧ prior(part (p2, e), o) (16)

Figure 1. Tshape: Shape axioms.

Two edges meet at a vertex iff they are distinct and the vertex is part of both edges.

(∀e1, e2, v, o) prior(meet (e1, e2, v), o) ≡

(prior(edge(e1), o) ∧ prior(edge(e2), o) ∧ prior(point (v), o)

∧prior(part (v, e1), o) ∧ prior(part (v, e2), o) ∧ (e1 6= e2) (17)

Every edge meets another distinct edge.

(∀e1, o) prior(edge(e1), o) ⊃ (∃e2) prior(meet (e1, e2, v), o) (18)

Exactly two edges meet at a vertex.

(∀e1, e2, e3, v, o)prior(meet (e1, e2, v), o)∧prior(meet (e1, e3, v), o) ⊃ (e2 = e3)(19)

All outer edges are connected.

(∀e1, e2, o)prior(outer(e1), o) ⊃ (prior(outer(e2), o) ≡ prior(connected(e1, e2), o))(20)

Figure 2. Tshape: Shape axioms.

We next define the class of structures that are isomorphic to the intended models of
Tshape.

Definition 3 Let Mshape be the class of structures such thatM ∈ Mshape iff

1. there exists a model N of Tdisc_state ∪ Tocctree ∪ Tpslcore such that N ⊂M;
2. each element of the occurrence tree in N is associated with a shape structure.

The following representation theorem constitutes the verification of the Shape On-
tology; as a consequence, it also demonstrates the consistency of the ontology.

Theorem 2 M ∈ Mshape iff it is isomorphic to a countable model of Tshape ∪

Tdisc_state ∪ Tocctree ∪ Tpslcore.

4. Shape Cutting Ontology

Each model of the original shape axioms from the CardWorld Ontology corresponds to
a different state within an occurrence tree in a model of Tshape ∪ Tdisc_state ∪ Tocctree ∪

Tpslcore. On the one hand, changing a shape is equivalent to changing state within the
occurrence tree; on the other hand, it is equivalent to a mapping between different models
of the original shape axioms. Since we have already shown how the models of the Shape
Ontology are isomorphic to a class of tripartite incidence structures, we can characterize
all possible mappings between structures in this class. With respect to state, any property
of a model that is not preserved by a mapping corresponds to a fluent that is either

achieved or falsified 4. This correspondence forms the basis for the specification of the
models of the axioms in the Shape Cutting Ontology.

4.1. Examples of Shape Cutting Activities

Suppose we begin with the surface depicted in Figure 3(a). With the cutting activity
depicted in Figure 3(b), three new edges e5, e6, e7 are created; of these three, e7 is a
modified edge, since all of its points were formerly parts of the edge e1. In Figure 3(c),
two new edges e5, e6 are created, neither of which is a modified edge. In both of these
cases, no new surface is created.

We next consider cases in which a new surface is created. In Figure 3(d), a new
surface is created which contains two new modified edges e5, e6 as well as an existing
edge e2 and a new edge e7. In addition, the original surface contains a new edge. In
Figure 3(e), a new surface is created with two new edges, one of which is modified. In
Figure 3(f), a new surface is created and each surface contains a new edge, but none of
the new edges are modified.

In all of the above examples, the outer fluent was unchanged. In Figure 3(g), two
new edges are created which form a hole in the surface. Suppose we begin with the
surface in Figure 3(h); the surface in Figure 3(i) depicts the effect of an occurrence of
the cutting activity that falsifies the outer fluent for all of the edges that were formerly
part of the whole. One new outer edge and one new non-outer edge are modified. The
activity whose occurrence is depicted in Figure 3(j) is a variant in which the outer fluent
is falsified but only two edges are created, neither of which is modified.

4.2. Axiomatization

The Shape Cutting Ontology (Tcutshape in Figures 4 and 5) begins with the definition of
a cutting process to be any activity that creates at least two new edges in some surface.
The remaining axioms explicate the different ways that a cutting process can possibly
change the properties of a surface and its components. In particular, the axioms specify
the conditions under which the fluents that specify the properties of surfaces (part , meet ,
and outer) can be achieved or falsified by occurrences of cutting processes. For example,
the part fluent changes as the result of edges or surfaces being created. New points
are never created without an edge being created; if the edge already exists, some points
simply become the vertices where other new edges meet.

4.3. Verification of the Shape Cutting Ontology

Models of Tcutshape are based on the notion of partial automorphisms of a shape struc-
ture. A mapping ϕ : S → S is a partial automorphism iff it is an isomorphism between
substructures of S. We use the notation dom(ϕ) to denote the set of elements in the sub-
structure of S that is the domain of the mapping. The set of partial automorphisms of a
shape structure forms an inverse semigroup, denoted by P Aut (S).

4The following definitions are used from the PSL Ontology:
(∀o, f) achieves(o, f) ≡ (¬prior(f, o) ∧ holds(f, o))

(∀o, f) f alsi f ies(o, f) ≡ (prior(f, o) ∧ ¬holds(f, o))

(∀o, f) changes(o, f) ≡ (achieves(o, f) ∨ f alsi f ies(o, f)).

e1

e2e4

e3

e1 e1 e1

e1 e1 e1

e1 e1 e1

e2
e2

e2

e2 e2 e2

e2

e3 e3 e3

e3 e3 e3

e3

e3
e3

e2
e2

e4 e4
e4

e4 e4 e4

e4
e4 e4

e5 e6

e7

e8
e5

e6

e5

e6

e7

e5

e6
e7

e5
e6

e5

e6e7e8 e5
e8

e7 e6 e6
e7

e8

e5
e9
e10

e11

e12

e9

e10

e5

e6

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 3. Examples of shape cutting processes.

Definition 4 Let Mcutshape be the class of structures such thatM ∈ Mcutshape iff

1. there exists N ∈ Mshape such that N ⊂M;
2. each element of the occurrence tree in N is associated with a unique

ϕ ∈ P Aut (S) such that f ∈ dom(ϕ) iff 〈o, f〉 6∈ changes;
3. 〈o, edge(e1)〉, 〈o, edge(e2)〉 ∈ achieves

Intuitively, the partial automorphisms capture the substructure of a shape structure
that is not changed as the result of an occurrence of a cutting process.

Theorem 3 M ∈ Mcutshape iff it is isomorphic to a countable model of Tcutshape ∪

Tshape ∪ Tdisc_state ∪ Tocctree ∪ Tpslcore.

5. Cutting Process Taxonomy

The Cutting Process Taxonomy is a classification of cutting processes, that is, activities
which satisfy Axiom 21. This is equivalent to characterizing all possible ways to change a
surface that satisfies the axioms of Tshape in such a way that at least two edges are created.
Since the axiomatization in Tcutshape provides such a characterization, the classification
of cutting processes corresponds to the classification of the models of Tcutshape.

5.1. Classes of Cutting Processes

Within the PSL Ontology, the taxonomy of activities arises from invariants that are used
to classify the models of the core theories [5]. Invariants are properties of models that

A cutting process creates two new edges in some surface.

(∀a) cutting(a) ≡ ((∀o) occurrence_of (o, a) (21)

⊃ (∃e1, e2, s) holds(edge(e1), o) ∧ holds(edge(e2), o) ∧ (e1 6= e2)

∧prior(sur f ace(s), o) ∧ achieves(o, part (e1, s)) ∧ achieves(o, part (e2, s))

Surfaces, edges, and points are never destroyed.

(∀x, o, a) cutting(a) ∧ occurrence_of (o, a)

⊃ ¬(f alsi f ies(o, sur f ace(x))∨ f alsi f ies(o, edge(x))∨ f alsi f ies(o, point (x)))(22)

New surfaces contain existing edges.

(∀s, o)achieves(o, sur f ace(s)) ⊃ (∃e)prior(edge(e), o)∧achieves(o, part (e, s))(23)

Existing edges never contain new points.

(∀e, v, o, a) cutting(a) ∧ occurrence_of (o, a)

∧prior(edge(e), o) ⊃ ¬achieves(o, part (v, e)) (24)

We can never achieve meet for existing edges.

(∀e1, e2, s, v, o, a) cutting(a) ∧ occurrence_of (o, a)

∧prior(part (e1, s), o)∧prior(part (e2, s), o) ⊃ ¬achieves(o, meet (e1, e2, v))(25)

Outer edges are always preserved.

(∀s, o, a) cutting(a) ∧ occurrence_of (o, a) ⊃ ¬ f alsi f ies(o, outer(s)) (26)

Every new outer edge contains an existing point.

(∀e, o, a) cutting(a) ∧ occurrence_of (o, a) ∧ achieves(o, edge(e))

∧achieves(o, outer(e)) ⊃ (∃p) holds(part (p, e), o) ∧ prior(point (p), o)(27)

Figure 4. Axioms of Tcutshape : Shape Cutting Ontology.

are preserved by isomorphism. For some classes of structures, invariants can be used to
classify the structures up to isomorphism; for example, vector spaces can be classified
up to isomorphism by their dimension. For other classes of structures, such as graphs,
it is not possible to formulate a complete set of invariants. Nevertheless, even without a
complete set, invariants can still be used to provide a classification of the models of a
theory.

We use the following invariants to classify the models of Tcutshape:

A modified edge is a new edge that does not contain any new points.

(∀e, o) modi f ied_edge(e, o) ≡ (28)

(achieves(o, edge(e)) ∧ ((∀p) holds(part (p, e), o) ⊃ prior(point (p), o))

A modified edge corresponds to a subset of points for an existing edge.

(∀e1, o, a) cutting(a) ∧ occurrence_of (o, a) ∧ modi f ied_edge(e1, o)

⊃ (∃e2)holds(edge(e2), o)∧((∀p)holds(part (p, e1), o) ⊃ prior(part (p, e2), o))(29)

Every new modified edge must meet an existing edge.

(∀e1, o, a) cutting(a) ∧ occurrence_o(o, a) ∧ modi f ied_edge(e1, o)

⊃ (∃e2, v) achieves(o, meet (e1, e2, v)) ∧ prior(edge(e2), o) (30)

Figure 5. Axioms of Tcutshape : Shape Cutting Ontology.

1. number of surfaces that are created (which is either zero or one);
2. number of holes that are destroyed (which is either zero or one);
3. number of edges that are created (which is either two, three, or four);
4. number of pairs of existing edges that are changed (which is either zero, one, or

two).

The axioms of Tcutprocess in Figure 6 and Figure 7 explicitly define the classes of
primitive activities that correspond to each of the possible values for the above invariants.

5.2. Verification of the Cutting Process Ontology

The correctness of Tcutprocess is established by the following theorem, which has also
been automatically derived using the Prover9 resolution theorem prover.

Theorem 4 Let Tcpo = Tcutprocess ∪ Tcutshape ∪ Tshape ∪ Tdisc_state ∪ Tocctree ∪ Tpslcore.
The classes activities related to each invariant are disjoint:
Tcpo |H ¬(∃a) (create_sur f ace(a) ∧ preserve_sur f ace(a))
Tcpo |H ¬(∃a) (destroy_hole(a) ∧ preserve_hole(a))
Tcpo |H ¬(∃a) (preserve_meet (a) ∧ change_one_meet (a) ∧ change_two_meet (a))
Tcpo |H ¬(∃a)(create_two_edge(a)∧create_three_edge(a)∧create_ f our_edge(a))

6. Summary

In this paper we have introduced an ontology for cutting processes in the manufacturing
domain of sheet metal parts. We have presented a first-order axiomatization of classes
of intended models and verified the ontology by proving representation theorems with
respect to these intended models.

Occurrences of activities in this class create a new surface.

(∀a) create_sur f ace(a) ≡ (31)

(∀o) occurrence_of (o, a) ⊃ (∃s) achieves(o, sur f ace(s))

Occurrences of activities in this class do not create a new surface.

(∀a) preserve_sur f ace(a) ≡ (32)

(∀o) occurrence_of (o, a) ⊃ ¬(∃s) achieves(o, sur f ace(s))

Occurrences of activities in this class destroy a hole by changing all non-outer edges to
outer edges in the same surface.

(∀a) destroy_hole(a) ≡ (33)

(∀o) occurrence_of (o, a) ⊃ (∃e) prior(edge(e), o) ∧ achieves(o, outer(e))

Occurrences of activities in this class do not change any existing edges in a surface to
be outer edges.

(∀a) preserve_hole(a) ≡ (34)

(∀o, e) occurrence_of (o, a) ∧ prior(edge(e), o) ⊃ ¬achieves(o, outer(e))

Occurrences of activities in this class do not change the set of existing edges that meet
other existing edges in the surface.

(∀a) preserve_meet (a) ≡ ((∀o) occurrence_of (o, a) ⊃ (35)

¬(∃e1, e2, v) (achieves(o, meet (e1, e2, v)) ∨ f alsi f ies(o, meet (e1, e2, v)))

Two existing edges no longer meet after occurrences of activities in this class.

(∀a) change_one_meet (a) ≡ (36)

((∀o) occurrence_of (o, a) ⊃ (∃e1, e2, v) f alsi f ies(o, meet (e1, e2, v)))

Two pairs of existing edges no longer meet after occurrences of activities in this class.

(∀a) change_two_meet (a) ≡ ((∀o) occurrence_of (o, a) ⊃ (37)

(∃e1, e2, e3, e4, v1, v2) f alsi f ies(o, meet (e1, e2, v1)) ∧ f alsi f ies(o, meet (e3, e4, v2)))

Figure 6. Axioms of Tcutprocess : Cutting Process Ontology.

Exactly two new edges are created by occurrences of activities in this class.

(∀a) create_two_edge(a) ≡ ((∀o) occurrence_of (o, a) ⊃ (38)

(∃e1, e2) achieves(o, edge(e1)) ∧ achieves(o, edge(e2))

∧((∀e) achieves(o, edge(e)) ⊃ ((e = e1) ∨ (e = e2)))

Exactly three new edges are created by occurrences of activities in this class.

(∀a) create_three_edge(a) ≡ ((∀o) occurrence_of (o, a) ⊃ (39)

(∃e1, e2, e3) achieves(o, edge(e1)) ∧ achieves(o, edge(e2)) ∧ achieves(o, edge(e3))

∧((∀e) achieves(o, edge(e)) ⊃ ((e = e1) ∨ (e = e2) ∨ (e = e3)))

Exactly four new edges are created by occurrences of activities in this class.

(∀a) create_ f our_edge(a) ≡ ((∀o) occurrence_of (o, a) ⊃ (40)

(∃e1, e2, e3, e4) achieves(o, edge(e1)) ∧ achieves(o, edge(e2))

∧achieves(o, edge(e3)) ∧ ∧achieves(o, edge(e4))

∧((∀e) achieves(o, edge(e)) ⊃ ((e = e1) ∨ (e = e2) ∨ (e = e3) ∨ (e = e4)))

Figure 7. Axioms of Tcutprocess : Cutting Process Ontology.

Several lines for future work are evident. First is the extension of the Shape Ontology
to incorporate geometric fluents, such as relative alignment and the length of edges. The
second is the extension of the Cutting Process Ontology to complex activities, which will
support process planning with cutting processes.

References

[1] Buekenhout, F. (1995) Handbook of Incidence Geometry. North-Holland.
[2] Bock, C. and Gruninger, M. (2005) PSL: A semantic domain for flow models, Software and Systems

Modeling 4:209-231.
[3] Gruninger, M. (2003) Ontology of the Process Specification Language, pp. 599-618, Handbook of On-

tologies and Information Systems, S. Staab (ed.). Springer-Verlag, Berlin.
[4] Gruninger, M. (1993) Grouping Assumptions in Shape-Based Object Recognition, pp. 32-37, Working

Notes AAAI Spring Symposium Series 1993: AI and NP-Hard Problems, Stanford.
[5] Gruninger, M. and Kopena, J. (2005) Semantic Integration through Invariants, AI Magazine, 26:11-20.
[6] de Sam Lazaro, A., and Engquist, D., and Edwards. D.B. (1993) An Intelligent Design for Manufactura-

bility System for Sheet-metal Parts, Concurrent Engineering: Research and Applications,1:117-123.
[7] Soman, A. and Padhye, S. and Campbell, M. (2003) Toward an automated approach to the design of

sheet metal components, Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
17:187-204.

