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Abstract

In this paper, we use the notions of relative interpre-
tations and definable models from mathematical logic
to compare different ontologies and also to evaluate the
limitations of particular ontologies. In particular, we
characterize the relationship between the theories within
the first-order PSL Ontology and two other ontologies
– a first-order theory of time and Reiter’s second-order
axiomatization of situation calculus.

1 Introduction
Representing activities and the constraints on their oc-
currences is an integral aspect of commonsense rea-
soning, particularly in manufacturing, enterprise mod-
elling, and autonomous agents or robots. There have
been a variety of process ontologies developed within
the artificial intelligence community, particularly in the
context of robotics and planning systems.

In this paper, we use the notions of relative interpre-
tations and definable models to compare different pro-
cess ontologies and also to evaluate the limitations of
particular ontologies. In particular, we characterize the
relationship between the theories within the first-order
PSL Ontology and two other ontologies – a first-order
theory of time and Reiter’s second-order axiomatiza-
tion of situation calculus. There are two major kinds of
results – relative interpretation theorems that show the
conditions under which two ontologies are equivalent,
and nondefinability theorems which show that one on-
tology is in some sense stronger since it is able to define
concepts that other ontologies cannot define.

2 Relationships between Theories
Different ontologies within the same language can be
compared using the notions of satisfiability, entailment,
and independence. More difficult is to compare ontolo-
gies that are axiomatized in different languages; in such
cases, we need to determine whether or not the lexi-
con of one ontology can be interpreted in the lexicon
of the other ontology. In this section, we review the
basic concepts from model theory that will supply us
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with the techniques for comparing ontologies in differ-
ent languages.

2.1 Relative Interpretations of Theories
We will adopt the following definition from (Enderton
1972):
Definition 1 An interpretation π of a theory T0 with
language L0 into a theory T1 with language L1 is a func-
tion on the set of parameters of L0 such that
1. π assigns to ∀ a formula π∀ of L1 in which at most
v1 occurs free, such that

T1 |= (∃v1) π∀
2. π assigns to each n-place relation symbol P a formula
πP of L1 in which at most the variables v1, ..., vn occur
free.

3. π assigns to each n-place function symbol f a formula
πf of L1 in which at most the variables v1, ..., vn, vn+1

occur free, such that

T1 |= (∀v1, ..., vn) π∀(v1) ∧ ... ∧ π∀(vn)

⊃ (∃x)(π∀(x)∧((∀vn+1)(πf (v1, ..., vn+1) ≡ (vn+1 = x))))
4. For any sentence σ in L0,

T0 |= σ ⇒ T1 |= π(σ)

2.2 Definable Interpretations
Relative interpretations specify mappings between the-
ories; we are also interested in specifying mappings be-
tween models of the theories. Such an approach will
also provide with a means of proving that no relative
interpretation exists between two particular theories.

We begin with the notion of definable sets within a
structure.
Definition 2 Let M be a structure in a language L.

A set X ⊆Mn is definable in M iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}

X is A-definable if there is a formula ψ(v, w1, ..., wl)
and b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}



Using this definition, we can adopt the following ap-
proach from (Marker 2002):

Definition 3 Let N be a structure in L0 and let M
be a structure in L. We say that N is definable in
M iff we can find a definable subset X of Mn and we
can interpret the symbols of L0 as definable subsets and
functions on X so that the resulting structure in L0 is
isomorphic to N .

The relationship between relative interpretations of
theories and definable interpretations of structures is
captured in a straightforward way by the following
proposition:

Proposition 1 If there exists an interpretation of T1

into T2, then every model of T1 is definable in some
model of T2.

Our primary tool for proving that the models of one
ontology are not definable in the models of another on-
tology will be the following proposition from (Marker
2002):

Proposition 2 Let M be a structure. If X ⊂ Mn is
A-definable, then every automorphism of M that fixes
the set A pointwise fixes X setwise (that is, if σ is an
automorphism of M and σ(a) = a for all a ∈ A, then
σ(X) = X).

Using this proposition, we can show that a relation
is not definable in some structure if there exists an au-
tomorphism of the structure that does not preserve the
relation.

3 Definability and Time Ontologies

3.1 Linear Time with Endpoints

Consider the ontology Tlinear−time
1 of linear time with-

out endpoints (Hayes 1996). The countable models of
this ontology are isomorphic to countably infinite linear
orderings with no initial or final element.

Lemma 1 Let T be a model of Tlinear time that is either
discrete or dense.

The set of automorphisms Aut(T ) does not fix any
timepoints.

Proof: A model T of Tlinear time is discrete iff it con-
tains a subordering that isomorphic to Z, and Aut(Z)
does not fix any elements of Z.
A model T of Tlinear time is dense iff it contains a
subordering that is isomorphic to Q, and Aut(Q) does
not fix any elements of Q. 2

In other words, any two timepoints in T can be
mapped each other by some automorphism of T , when-
ever T is either discrete or dense.

1The axioms for Tlinear−time in CLIF (Com-
mon Logic Interchange Format) can be found at
http://www.stl.mie.utoronto.ca/colore/linear-time.clif

3.2 Relationship to PSL-Core
The purpose of PSL-Core ((Gruninger 2004), (Bock &
Gruninger 2005)) is to axiomatize a set of intuitive
semantic primitives that are adequate for describing
the fundamental concepts of manufacturing processes.
Consequently, this characterization of basic processes
makes few assumptions about their nature beyond what
is needed for describing those processes, and it is there-
fore rather weak in terms of logical expressiveness.

Within PSL-Core 2, there are four kinds of entities
required for reasoning about processes – activities, ac-
tivity occurrences, timepoints, and objects. Activities
may have multiple occurrences, or there may exist ac-
tivities which do not occur at all. Timepoints are lin-
early ordered, forwards into the future, and backwards
into the past. Finally, activity occurrences and objects
are associated with unique timepoints that mark the
begin and end of the occurrence or object.
Lemma 2 A model of Tpslcore in which the ordering
over timepoints is either discrete or dense is not de-
finable in any model of Tlinear−time.
Proof: Let T be a model of Tlinear time and let M be

a model of Tpslcore in which the ordering over time-
points is either discrete or dense.
By Lemma 1, the set of automorphisms Aut(T ) does
not fix any timepoints, so that for any timepoint t
there exists ϕ ∈ Aut(T ) such that ϕ(t) 6= t.
Since beginof is a function, activity occurrences have
unique beginning timepoints, so that we have

〈o, t〉 ∈ beginof ⇒ 〈o, ϕ(t)〉 6∈ beginof

By Proposition 2, the beginof function is not defin-
able in T , and hence M is not definable in T . 2

Theorem 1 There does not exist an interpretation of
Tpslcore into Tlinear−time.
Proof: This follows from Proposition 1 and Lemma 1.

2

By Theorem 1, we cannot use a time ontology alone
to reason about activities and their occurrences.

4 Definability and Situation Calculus
In this section, we characterize the relationship between
Reiter’s second-order axiomatization of the situation
calculus and three core theories within the first-order
PSL Ontology.

4.1 Axiomatization of Situation Calculus
Consider the theory Tsitcalc which is Reiter’s second-
order axiomatization of the situation calculus ((Reiter
2001), (Levesque et al. 1997)). Let Tsittime be Pinto’s
axiomatization of time for situation trees ((Pinto & Re-
iter 1995)) and let Tsitfluent be Pinto’s axiomatization
of the holds relation3.

2The axiomatization of PSL-Core (also re-
ferred to as Tpslcore) in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/psl core.html

3The axioms of Tsitcalc in CLIF can be found at
http://stl.mie.utoronto.ca/colore/sitcalc.clif.



4.2 Relationship to PSL-Core
Theorem 2 There exists an interpretation of Tpslcore

into Tsitcalc ∪ Tsittime.
Proof: Suppose

πoccurrence of (s, a) = ((∃s1) s = do(a, s1))

πactivity(a) = ((∃s1, s2) s = do(a, s1))

πactivity occurrence(s) = ((∃a, s1) s = do(a, s1))

πtimepoint(t) = ((∃s) (start(s) = t))

πbeginof (s, t) = ((start(s) = t))

πendof (s, t) = ((∃a) (end(s, a) = t))

It is straightforward to verify that these mappings and
the axioms of Tsitcalc ∪ Tsittime entail the axioms of
Tpslcore. 2

Of course, it is not surprising to see that there exists
an interpretation of Tpslcore into Tsitcalc∪Tsittime, since
the theory Tpslcore was designed to be the weakest pro-
cess ontology that is shared by other process ontologies.

4.3 Relationship to Occurrence Trees
Within the PSL Ontology, the theory Tocctree extends
the theory of Tpslcore

4. An occurrence tree is a par-
tially ordered set of activity occurrences, such that for
a given set of activities, all discrete sequences of their
occurrences are branches of the tree.

An occurrence tree contains all occurrences of all ac-
tivities; it is not simply the set of occurrences of a par-
ticular (possibly complex) activity. Because the tree
is discrete, each activity occurrence in the tree has a
unique successor occurrence of each activity. Every se-
quence of activity occurrences has an initial occurrence
(which is the root of an occurrence tree).

Although occurrence trees characterize all sequences
of activity occurrences, not all of these sequences will in-
tuitively be physically possible within the domain. We
therefore consider the subtree of the occurrence tree
that consists only of possible sequences of activity oc-
currences; this subtree is referred to as the legal occur-
rence tree.

Occurrence trees are closely related to situation trees,
which are the models of Reiter’s axiomatization of sit-
uation calculus; the following theorems make this intu-
ition more precise.

Theorem 3 There exists an interpretation of Tocctree∪
Tpslcore into Tsitcalc ∪ Tsittime.

The axioms of Tsittime can be found at
http://stl.mie.utoronto.ca/colore/sittime.clif.
The axioms of Tsitfluent can be found at
http://stl.mie.utoronto.ca/colore/sitfluent.clif.

4The axioms of Tocctree in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/part12/
occtree.th.html

Proof: Suppose

πearlier(s1, s2) = s1 < s2

πgenerator(a) = (∃s1, s2) s = do(a, s1)

πarboreal(s) = (∃a, s1) s = do(a, s1)

πsuccessor(a, s) = do(a, s)

πinitial(s) = (s = do(a, S0))

πlegal(s) = (executable(s))

It is straightforward to verify that these mappings and
the axioms of Tsitcalc ∪ Tsittime entail the axioms of
Tocctree ∪ Tpslcore. 2

What of the converse direction – does there exist an
interpretation of Tsitcalc∪Tsittime into Tocctree∪Tpslcore.
The primary difference between Tocctree and Tsitcalc is
the existence of models of Tocctree that are occurrence
trees with branches that are not isomorphic to the stan-
dard models of the theory Th(N, 0, S,<); such trees
cannot be isomorphic to situation trees.

Definition 4 WFAS is the first-order axiom schema

(∀s) (φ(s) ∧ arboreal(s))

⊃ ((∃x)φ(x)∧earlier(x, s)∧((∀y)earlier(y, x) ⊃ ¬φ(y)))

for any first-order formula φ(x).

This axiom schema is equivalent to saying that all first-
order definable sets of elements in an occurrence tree
are well-founded.

Theorem 4 Let ACA be a sentence of the form

(∀a, s1, s2) (s2 = do(a, s1)) ⊃ (a = A1) ∨ ... ∨ (a = An)

There exists an interpretation of Tsitcalc ∪ACA into
Tocctree ∪ Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

π<(S0, s2) = (∃s) initial(s)∧(earlier(s, s2)∨(s = s2)

(s1 6= S0) ⇒ π<(s1, s2) = earlier(s1, s2)

πdo(a, S0) = (∃s) initial(s) ∧ occurrence of(s, a)

(s1 6= S0) ⇒ πdo(a, s) = successor(a, s)

πexecutable(s) = (legal(s))

Since the interpretation of theories is specified with
respect to first-order entailment, we only need to show
that the first-order consequences are preserved by the
interpretation.
The techniques introduced in (Doets 1989) and (Back-
ofen, Rogers, & Vijay-Shanker 1995) can be used to
show that the models of Tocctree∪Tpslcore∪WFAS are
elementarily equivalent to models of Tsitcalc ∪ ACA.
2



4.4 Relationship to Discrete States
Most applications of process ontologies are used to rep-
resent dynamic behaviour in the world so that intelli-
gent agents may make predictions about the future and
explanations about the past. In particular, these pre-
dictions and explanations are often concerned with the
state of the world and how that state changes. The
PSL core theory Tdisc state is intended to capture the
basic intuitions about states and their relationship to
activities5.

Within the PSL Ontology, state is changed by the
occurrence of activities. Intuitively, a change in state
is captured by a state that is either achieved or falsi-
fied by an activity occurrence. Furthermore, state can
only be changed by the occurrence of activities. Thus,
if some state holds after an activity occurrence, but af-
ter an activity occurrence later along the branch it is
false, then an activity must occur at some point be-
tween that changes the state. This also leads to the
requirement that the state holding after an activity oc-
currence will be the same state holding prior to any
immediately succeeding occurrence, since there cannot
be an activity occurring between the two by definition.
Theorem 5 There exists an interpretation of
Tdisc state ∪ Tocctree ∪ Tpslcore into Tsitcalc ∪ Tsittime ∪
Tsitfluent.
Proof: Suppose

(s 6= S0) ⇒ πholds(f, s) = holds(f, s)

πprior(f, s) = (((∀s, s′, a) s = do(a, s′) ⊃ holds(f, s))
∧(((∃s, s′, a) s = do(a, s′)) ∨ holds(f, S0)))

It is straightforward to verify that these mappings and
the axioms of Tsitcalc ∪ Tsittime ∪ Tsitfluent entail the
axioms of Tdisc state ∪ Tocctree ∪ Tpslcore. 2

The interpretation of situation calculus into the PSL
Ontology requires an additional assumption that the set
of fluents in any model be finite and bounded.
Theorem 6 Let FCA be a sentence of the form

(∀f, s) holds(f, s) ⊃ (f = F1) ∨ ... ∨ (f = Fm)

There exists an interpretation of Tsitcalc ∪ Tsittime ∪
Tsitfluent ∪ ACA ∪ FCA into Tdisc state ∪ Tocctree ∪
Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

πholds(f, s) = holds(f, s)

πholds(f, S0) = (∃s) initial(s) ∧ prior(f, s)
As with Theorem 4, the techniques introduced in
(Doets 1989) and (Backofen, Rogers, & Vijay-Shanker
1995) can be used to show that the models of
Tdisc state∪Tocctree∪Tpslcore∪WFAS are elementarily
equivalent to models of Tsitcalc ∪ Tsittime ∪ Tsitflent ∪
ACA ∪ FCA. 2

5The axioms of Tdisc state in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/part12/
disc state.th.html

Although Tsitcalc ∪ Tsittime ∪ Tsitfluent cannot be in-
terpreted into Tdisc state∪Tocctree∪Tpslcore without the
axiom schema, we can show that the two theories are
equivalent with respect to a restricted class of first-order
sentences.
Theorem 7 Let Q(s) be a simple state formula in the
language of Tsitcalc and let Q′(s) be the the image of
the formula under the interpretation into Tdisc state ∪
Tocctree ∪ Tpslcore.

For any model M of Tsitcalc ∪ Tsittime ∪ Tsitfluent

there exists a model N of Tdisc state ∪ Tocctree ∪ Tpslcore

such that

Th(M) |= (∀s)Q(s) ⇔ Th(N ) |= (∀s)Q′(s)

and

Th(M) |= (∃s)Q(s) ⇔ Th(N ) |= (∃s)Q′(s)

Proof: (Sketch) Axioms 6 and 7 of Tdisc state are log-
ically equivalent to the instantiation of the axiom
schema WFAS for positive and negative holds liter-
als, respectively. Since simple state formulae are finite
boolean combinations of positive and negative holds
literals with the same activity occurrence variable, the
instantiation of WFAS for a simple state formula is
logically equivalent to a finite boolean combination of
sentences that are entailed by Tdisc state ∪ Tocctree ∪
Tpslcore. 2

The first sentence in Theorem 7 corresponds to the
classical planning problem, while the second sentence
corresponds to the entailment of state constraints. By
this theorem, the PSL Ontology entails the same set of
plans and state constraints as Tsitcalc.

5 Nondefinability Theorems
In this section, we show that the remaining core theories
in the PSL Ontology cannot be interpreted in Tsitcalc ∪
Tsittime.

5.1 Automorphisms of Situation Trees
All of the nondefinability theorems rest on the charac-
terization of the automorphisms of situation trees and
the failure of these automorphisms to preserve the sets
that correspond to the extensions of the functions and
relations in models of the PSL Ontology. We introduce
three lemmas that characterize properties of the auto-
morphisms of situation trees which will be used in later
proofs.
Lemma 3 Let R be a model of Tsitcalc ∪ Tsittime and
let Aut(R) be the set of automorphisms of R.

For any ϕ ∈ Aut(R) and any element o of the situ-
ation tree, o and ϕ(o) must be on different branches of
the situation tree.
Lemma 4 Let R be a model of Tsitcalc ∪ Tsittime.

The set of automorphisms Aut(R) of a situation tree
is transitive on the set of situations that are the succes-
sors of a situation in the tree.



Lemma 5 Let R be a model of Tsitcalc ∪ Tsittime.
The set of automorphisms Aut(R) of a situation tree

is transitive on the set of actions in R.

5.2 Relationship to Subactivities
The theory Tsubactivity in PSL Ontology uses the
subactivity relation to capture the basic intuitions for
the composition of activities6. This relation is a dis-
crete partial ordering, in which primitive activities are
the minimal elements.
Lemma 6 A model M of Tsubactivity ∪ Tpslcore with
nonprimitive activities is not definable in any model of
Tsitcalc ∪ Tsittime.
Proof: We will show that the subactivity relation in
M is not definable in any model of Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of
a situation tree is transitive on the set of actions in
R; thus, there exists ϕ ∈ Aut(R) and distinct actions
a1,a2 such that ϕ(a1) = a2. By the following axiom
of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a1,a2〉 ∈ subactivity ⇒ 〈ϕ(a1), ϕ(a2)〉 6∈ subactivity

By Proposition 2, the subactivity relation is not de-
finable in R, and hence M is not definable in R. 2

Theorem 8 There does not exist an interpretation of
Tsubactivity ∪ Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 6 and Lemma 1. 2

5.3 Relationship to Atomic Activities
The primary motivation behind the core theory Tatomic

in the PSL Ontology is to capture intuitions about the
occurrence of concurrent activities7. The core theory
Tatomic introduces the function conc that maps any two
atomic activities to the activity that is their concur-
rent composition. Essentially, an atomic activity corre-
sponds to some set of primitive activities, so that every
concurrent activity is equivalent to the composition of
a set of primitive activities.
Lemma 7 A model M of Tatomic∪Tsubactivity∪Tpslcore

with nonatomic activities is not definable in any model
of Tsitcalc ∪ Tsittime.
Proof: We will show that the conc function and

atomic relation in M are not definable in any model
of Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of a
situation tree is transitive on the set of actions in R;
6The axioms of Tsubactivity in CLIF can be found at

http://www.mel.nist.gov/psl/psl-ontology/part12/
subactivity.th.html

7The axioms of Tatomic in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/part12/
atomic.th.html

thus there exists ϕ ∈ Aut(R) and actions a1,a2,a3

such that a3 = conc(a1,a2) and

ϕ(a1) = a1, ϕ(a2) = a2, ϕ(a3) = a3

It is easy to see that

ϕ(conc(a1,a2)) 6= conc(ϕ(a1), ϕ(a2))

There also exists ϕ ∈ Aut(R) and distinct actions
a1,a2 such that ϕ(a1) = a2 and

〈a1,a2〉 ∈ subactivity

〈a1〉 ∈ atomic, 〈a2〉 6∈ atomic
By the following axiom of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a〉 ∈ atomic ⇒ 〈ϕ(a)〉 6∈ atomic

By Proposition 2, the conc function and atomic re-
lation are not definable in R, and hence M is not
definable in R. 2

Theorem 9 There does not exist an interpretation of
Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into Tsitcalc ∪
Tsittime.
Proof: This follows from Lemma 7 and Lemma 1. 2

5.4 Relationship to Complex Activities
The core theory Tcomplex characterizes the relationship
between the occurrence of a complex activity and oc-
currences of its subactivities8. Occurrences of complex
activities correspond to sets of occurrences of subactiv-
ities; in particular, these sets are subtrees of the oc-
currence tree. An activity tree consists of all possible
sequences of atomic subactivity occurrences beginning
from a root subactivity occurrence. In a sense, activity
trees are a microcosm of the occurrence tree, in which
we consider all of the ways in which the world unfolds
in the context of an occurrence of the complex activity.
Lemma 8 A model M of Tcomplex ∪ Tatomic ∪
Tsubactivity ∪ Tpslcore with nonatomic activities such
that not all activity occurrences are elements of non-
trivial activity trees is not definable in any model of
Tsitcalc ∪ Tsittime.
Proof: We will show that the root and min precedes

relations in M are not definable in any model of
Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of a
situation tree is transitive on the set of situations that
are the successors of any situation in the tree.
There exists ϕ1 ∈ Aut(R) such that for any s1, s2 that
are successors of the same element of the situation
tree such that ϕ1(s1) = s2 and such that s1 is not
8The axioms of Tcomplex in CLIF can be found at

http://www.mel.nist.gov/psl/psl-ontology/part12/
complex.th.html



an element of any nontrivial activity tree and s2 is an
element of a nontrivial activity tree.
If s2 is a root of an activity tree, then there exists
ϕ1 ∈ Aut(R) such that

〈s,a〉 ∈ root ⇒ 〈ϕ1(s),a〉 6∈ root

If s2 is not a root of an activity tree, then there exists
ϕ2 ∈ Aut(R) such that

〈s1, s2,a〉 ∈ min precedes ⇒

〈ϕ2(s1), ϕ2(s2), ϕ2(a)〉 6∈ min precedes

By Proposition 2, the root and min precedes re-
lations are not definable in R, and hence M is not
definable in R. 2

Theorem 10 There does not exist an interpretation of
Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into
Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 8 and Lemma 1. 2

5.5 Relationship to Complex Activity
Occurrences

Within Tcomplex, complex activity occurrences corre-
spond to activity trees, and consequently occurrences of
complex activities are not elements of the legal occur-
rence tree. The axioms of the core theory Tactocc ensure
complex activity occurrences correspond to branches of
activity trees9. Each complex activity occurrence has a
unique atomic root occurrence and each finite complex
activity occurrence has a unique atomic leaf occurrence.
A subactivity occurrence corresponds to a sub-branch
of the branch corresponding to the complex activity oc-
currence.

Lemma 9 A model M of Tactocc ∪ Tcomplex ∪ Tatomic ∪
Tsubactivity ∪Tpslcore with occurrences of nonatomic ac-
tivities is not definable in any model of Tsitcalc∪Tsittime.

Proof: We will show that the
subactivity occurrence relation in M is not
definable in any model of Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of
a situation tree is transitive on the set of situations
that are the successors of any situation in the tree.
Furthermore, Aut(R) only acts on elements of the
situation tree, so that it fixes occurrences of complex
activities.
By Lemma 3, any ϕ ∈ Aut(R) maps elements of a
branch of the situation tree to another branch of the
situation tree; however, the axioms of Tactoc entail
that all subactivity occurrences of a complex activity
occurrences must be on the same branch of the tree.
9The axioms of Tactocc in CLIF can be found at

http://www.mel.nist.gov/psl/psl-ontology/part12/
actocc.th.html

Thus, for any activity occurrence o1 that is an ele-
ment of the situation tree and any complex activity
occurrence o2, there exists ϕ ∈ Aut(R) such that

〈o1,o2〉 ∈ subactivity occurrence ⇒

〈ϕ(o1),o2〉 6∈ subactivity occurrence

By Proposition 2, the subactivity occurrence rela-
tion is not definable in R, and hence M is not defin-
able in R. 2

Theorem 11 There does not exist an interpretation of
Tactocc ∪ Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪
Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 9 and Lemma 1. 2

6 Summary
In this paper we have characterized the relationship be-
tween the PSL Ontology and two other ontologies – a
time ontology and Reiter’s second-order axiomatization
of situation calculus. With the addition of a first-order
axiom schema and the restriction to finite domains of
activities and fluents, the PSL Ontology is elementar-
ily equivalent to the situation calculus axiomatization.
Furthermore, the core theories in PSL Ontology that
axiomatize subactivities and complex activities are not
definable in the situation calculus.
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