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Abstract

Although there is consensus that a formal ontology con-
sists of a set of axioms within some logical language,
there is little consensus on how a formal ontology dif-
fers from an arbitrary theory. There is an intuitive
distinction between the formal ontology and the set of
domain theories that use the ontology, but there has
been no characterization of this distinction. In this pa-
per we utilize the notions of definable sets and types
from model theory mathematical logic to provide a se-
mantic characterization of the domain theories for an
ontology. We illustrate this approach with respect to
several formal ontologies from mathematical logic and
knowledge representation.

Motivation
Ontological engineering was born with the promise of
reusability, integration, and interoperability. Of in-
creasing importance are the problems merging ontolo-
gies from different domains and translating among mul-
tiple ontologies from the same domain. However, to a
large degree, we have not yet delivered these promised
benefits. What we lack is a framework within which
people can develop and share reusable ontologies.

On the one hand, formal ontologies are specific the-
ories – we are not defining new languages or logics. On
the other hand, formal ontologies are different from ar-
bitrary theories in that we intuitively think of ontologies
as being the reusable portion of domain theories. Of
course, this begs the question of defining domain theo-
ries, and it raises the perennial debate of the difference
between ontologies and knowledge bases.

In the course of providing a formal characterization of
domain theories for ontologies, we are guided by several
intuitions.

• Domain theories and queries are constructed using
ontologies – typical reasoning problems include sen-
tences that describe a particular scenario in addition
to the axioms of the ontologies.

• Ontologies are the reusable parts of domain theories,
in the sense that all domain theories for an ontol-
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ogy are extensions of a unique set of axioms in the
ontology.

• In semantic interoperability scenarios, software ap-
plications exchange sentences that are written using
ontologies, rather than exchange axioms from the on-
tologies themselves.
The objective of this paper to is to provide a semantic

characterization of domain theories, that is, one that is
based on properties of the models of the formal ontol-
ogy.

Some Motivating Examples
We consider several ontologies and the sentences that
are intuitively their domain theories. We begin with
two mathematical theories which are well understood
before moving on to two ontologies from the knowledge
representation community.

Algebraically Closed Fields Suppose that two
software applications share the ontology of algebraically
closed fields (Hodges 1993), for example, CAD software
that is based on algebraic geometry. Such software ap-
plications will exchange shapes that are specified by
polynomials; they are not exchanging axioms in the on-
tology. In this case, we can see that the domain theories
for algebraically closed fields are polynomials.

Groups Domain theories for the ontology of groups
(Hodges 1993) are either explicitly specifying particular
groups or subgroups of other groups. A group presen-
tation defines a group by specifying a set of elements
of a group (known as generators) such that all other
elements of the group can be expressed as the product
of the generators subject to a set of equations (known
as relations among the generators). For example, the
group presentation for the cyclic group of order three is
the equation a · a · a = 1.

Time Ontologies Consider an ontology of time
T dense (Hayes 1996) in which the set of timepoints is
linearly ordered and dense Such an ontology is typically
used to specify the underlying constraints in common-
sense reasoning problems about events (e.g. “Bob left



home before arriving at work and Alice arrived at work
after Bob”). This set of constraints constitutes a do-
main theory for the ontology T dense; in general, the
domain theories consist of boolean combinations of sets
of timepoints that form intervals on the linear ordering.

Situation Calculus The axiomatization of situation
calculus in (Reiter 2001) includes a set of foundational
axioms (the ontology) together with a set of axioms
which plays the role of a domain theory.

A simple state formula is a formula which contains a
unique situation variable and which contains only holds
literals. A precondition axiom for an activity A is a
sentence of the form

(∀s) poss(A, s) ⊃ Q(s)

where Q(s) is a simple state formula. An effect axiom
for an activity A is a sentence of the form

(∀s)Q1(s) ⊃ holds(F, do(A, s))
where Q(s) is a simple state formula and F is a fluent.
Basic action theories, which consist of sets of precondi-
tion and effect axioms, are domain theories for situation
calculus.

Domain Theories and Definable Sets
The characterization of ontologies and domain theories
rests on the model-theoretic notion of definability. Af-
ter introducing this notion, we will use it to distinguish
between the different classes of theories within an on-
tology.

Definable Sets
We will adopt the following definition from (Marker
2002):
Definition 1 Let M be a structure in a language L.

A set X ⊆Mn is definable inM iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}
X is A-definable if there is a formula ψ(v, w1, ..., wl)

and b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}
We say that X is ∅-definable if A = ∅. If A is

nonempty, we say that X is definable with parameters.

Example 1 SupposeM is an algebraically closed field.
The set of even numbers is ∅-definable in M:

{x : (∃y) x = y + y}
The set of prime numbers is ∅-definable in M:

{x : (∀y, z) (y · z = x) ⊃ (y = x) ∨ (z = x)}
The set

{x : a0 + a1x+ a2x
2 + ...+ anx

n = 0}
is definable with parameters a0, ..., an.

Definitional Extensions and Core Theories
An ontology is specified by a set of axioms in some
formal language. Nevertheless, this is not an amor-
phous set, and the notion of definability allows us to
distinguish between different kinds of sentences within
an ontology.

Definition 2 A theory T1 is a definitional extension of
a theory T iff every constant, function, and relation in
models of T1 is ∅-definable in models of T .

It is easy to see that a definitional extension of a the-
ory T is also a conservative extension of T , although
the converse is not true; that is, there are conservative
extensions of theories which are not definitional exten-
sions.

Definition 3 A theory T core is a core theory iff it is
not a definitional extension of any other theory.

Combining these two classes of sentences gives us the
following definition of an ontology.

Definition 4 An ontology T onto is a theory consisting
of a set of core theories and a set of definitional exten-
sions.

Intuitively, the core theories axiomatize the primitive
functions and relations in the ontology. If a core the-
ory in an ontology is an extension of some other core
theories in the ontology, then it is a nonconservative
extension.

In the case of the PSL Ontology ((Gruninger 2004),
(Bock & Gruninger 2005), (Gruninger & Kopena
2004)), the conservative extensions within the ontology
are axiomatizations of invariants that are used to clas-
sify the models of the core theories within the ontology.

Domain Theories
We are still faced with the question of how domain the-
ories are different from the other two classes of theories
within an ontology. Whereas a definitional extension is
an axiomatization of the ∅-definable sets in a model of
an ontology T onto, we will say that a domain theory for
an ontology T onto is an axiomatization of sets that are
definable with parameters in some model of T onto.

Definition 5 A theory T dt is a domain theory for an
ontology T onto iff every sentence in T dt defines a set
X ⊆Mn with parameters in some model M of T onto.

In general, domain theories are not conservative ex-
tensions of the ontology. For example, the domain the-
ory consisting of the equation

(a · (a · a)) = 1

in the theory of groups entails the sentence

(∃x, y) (x · y) = (y · x)

which is not entailed by the axioms in the theory of
groups alone.



On the other hand, domain theories are distinct from
arbitrary nonconservative extensions of the ontology.
For example, the sentence

(∀x, y) (x · y) = (y · x)

axiomatizes abelian groups; it forms a nonconservative
extension of the theory of groups, yet we would not
consider it to be a domain theory.

Domain Theories and Types
The next step is to show how the set of domain theories
for an ontology can be characterized with respect to
properties of the models of the ontology. This will allow
us to formalize the intuitions presented earlier in the
motivation.

Types
Types describe a model of a theory from the point
of view of a single element or a finite set of elements
((Marker 2002), (Rothmaler 2000)).

Definition 6 Let M be a model for a language L.
The type of an element a ∈M is defined as

typeM(a) := {φ : φ is a formula of L,M |= φ }
An n-type for a theory T is a set Φ(x1, ..., xn) of for-

mulae, such that for some model M of T , and some
n-tuple a of elements of M, we have M |= φ(a) for all
φ in Φ.

If t is an n-type, then a model M realizes t iff there
are a1, ..., an ∈M such that

M |= t(a1, ..., an)

A type p is a complete n-type iff φ ∈ p or ¬φ ∈ p for
any formula φ with n free variables; a partial type is a
type that is not complete.

Informally, the type for an element in a model is a set
of formulae which are satisfied by some set of elements
in the model. An n-type for a theory is a consistent set
of formulae (each of which has n free variables) which
is satisfied by a model of the theory.

Characterization Theorems for Domain
Theories
The model-theoretic notion of type allows us to formal-
ize the intuition that domain theories are theories about
elements in the domain of a model of the ontology.

Theorem 1 A set of sentences T dt is a domain theory
for an ontology T onto iff it is logically equivalent to a
boolean combination of finite partial n-types for T onto.

Proof: ⇒:) Let ϕ(x1, ..., xn) be a sentence in a domain
theory for T onto and let

{a : M |= ϕ(x)}

be the set defined by this sentence in a model M of
T onto. It is easy to see that this set realizes the finite
n-type ϕ(x1, ..., xn) in M.

⇐:) The set of elements that realize a finite type in
M constitute a definable set. The boolean combi-
nation of finite partial n-types is equivalent to the
union, intersection, complement, and projection of
definable sets, and these operations preserve defin-
able sets. Therefore, the boolean combination of n-
types is logically equivalent to a domain theory. 2

This result shows that we can specify all possible do-
main theories for an ontology by identifying the finite
partial types for elements in the models of the ontology.

Not all types correspond to domain theories, since a
type that consists of an infinite set of formulae may not
be first-order definable. For example,

{0 < c, S(0) < c, S(S(0)) < c, ...}
is an infinite type that is realized by a nonstandard
number c in a model of Th(N, 0, S,<), yet the set is
not first-order definable in the theory.

The next two theorems characterize domain theories
with respect to the models of the ontology, and formal-
ize the intuition that ontologies are the reusable parts
of domain theories.
Theorem 2 If T dt is a domain theory for an ontology
T onto then there exists a model M of T onto such that

T onto ∪ T dt ⊆ Th(M)

Proof: By Definition 5, the sentences in T dt define sets
with parameters in some model M of T onto. We
therefore have

T onto ⊆ Th(M)
Suppose that there is a sentence Σ ∈ T dt such that
Σ 6⊂ Th(M). In this case, we must have M |= ¬Σ,
which would mean that Σ does not define a set in
M, and hence would not be a sentence in a domain
theory. We therefore also have

T dt ⊆ Th(M)
2

From this result we can see that models of of a domain
theory are models of the ontology.
Theorem 3 For any model M of T onto, there exists a
domain theory T dt for T onto such that

T onto ∪ T dt ⊆ Th(M)

Proof: Since M is a model of T onto, we have
T onto ⊆ Th(M)

If T dt is the set of sentences that define sets in M,
then T dt 6= ∅ (since finite sets are definable). T dt is
therefore a domain theory such that

M |= T dt

As a result, we know that T onto ∪ T dt is consistent.
Since M |= T onto ∪ T dt, we have

T onto ∪ T dt ⊆ Th(M)
2



Note that any definable set must have some axioma-
tization, whereas nondefinable sets cannot be axioma-
tized by any theory. Furthermore, every model contains
definable sets (since finite sets are always definable).
Consequently, domain theories will always exist for any
ontology.

We can define a complete domain theory as one that
satisfies

T onto ∪ T dt = Th(M)
for some model M of Tonto. In other words, a com-
plete domain theory is an axiomatization of a particu-
lar model of the ontology. Not all ontologies will have
complete domain theories

Techniques for Specifying Domain Theories
Model theory provides several techniques for specifying
the types for first-order theories. The most widely use
technique is known as the elimination of quantifiers, in
which one focusses on the sets that are definable by
formulae that are quantifier-free.

A theory T admits the elimination of quantifiers if
for every formula φ there is a formula ψ such that

T |= φ ≡ ψ
One typically determines this by specifying a set
quantifier-free formulae ∆ (known as the elimination
set) such that for every formula φ in the language of T
there is a formula ψ which is a boolean combination of
formulae in ∆, and φ is equivalent to ψ in every model
of T . It is easy to see that in ontologies that admit elim-
ination of quantifiers, the elimination set characterizes
the set of types.

Revisiting the Examples
The set of types for many ontologies within mathemat-
ical logic have been specified for within the literature.
We can see that the types for the ontologies that we
considered for the theories in the motivation do indeed
correspond to the intuitions that we have about their
domain theories.

Algebraically Closed Fields and Polynomials
Since algebraically closed fields admit the elimination
of quantifiers, it can be shown ((Marcja & Toffalori
2003)) that any irreducible polynomial corresponds to
a complete 1-type and that 2-types correspond to al-
gebraic curves. In other words, there is a one-to-one
correspondence between the set of roots of polynomi-
als (algebraic numbers) and definable elements in the
models of Tfield. There is also the complete 1-type that
is realized by all numbers that are transcendental over
models of the ontology; this type is not generated by a
finite set of formulae.

Presentations and Groups Although the theory of
groups does not admit elimination of quantifiers, it can
be shown that all 1-types for Tgroup are of the form

(∃y, z) x = y · z

We can see that both presentations and group equations
are domain theories for groups, since they are boolean
combinations of 1-types. In a sense, the presentation is
equivalent to the types realized by all elements of the
group G; when a presentation exists, it is a complete
axiomatization of the theory Th(G) for the group.

Time Ontologies Models of Tdense are isomorphic to
dense linear orderings, whose n-types have been fully
characterized in (Rosenstein 1973). The n-types for
Tdense are therefore boolean combinations of literals of
the form before(vi, vj) and vi = vj . Thus the types for
dense linear orderings correspond to the domain theo-
ries discussed in Section 1.1.

Action Theories in Situation Calculus Although
there has been no work on the characterization of the
types for Tsitcalc we can still show that action theories
define sets in models of Tsitcalc, and so are domain the-
ories for Tsitcalc.

The precondition axiom for each action a is realized
by the definable set of situations

{s1 : s1 = do(a, s), 〈s1〉 ∈ executable}
that is, the set of executable situations that correspond
to occurrences of a. The effect axiom for each action a
is realized by the definable set of situations

{s1 : s1 = do(a, s), 〈f , s1〉 ∈ holds⇔ 〈f , s〉 6∈ holds}
that is, the set of situations that achieve or falsify spe-
cific fluents. A complete characterization of all types
and domain theories for Tsitcalc) is an open research
problem.

Evaluating the Ontology
We can evaluate the correctness and completeness of
the ontology and domain theories with respect to the
characterization of definable sets. For correctness, all
domain theories for an ontology must be consistent with
the ontology. For completeness, we need to determine
if we construct models of the ontology that do not re-
alize any types corresponding to some class of domain
theories.
Definition 7 Let Σ be a set of types for a theory T .
T is definably complete with respect to Σ iff every

model of T realizes some type in Σ.
In Tsitcalc, precondition axioms are domain theories,

but not all activities realize precondition axioms i.e.
there are other classes of domain theories
Theorem 4 The ontology Tsitcalc is not definably com-
plete with respect to the set of basic action theories.
Proof: We will construct a model of Tsitcalc that does

not satisfy any basic action theory (i.e. set of pre-
condition and effect axioms).
let s1, s2 be situations in the situation tree that agree
on state, that is, for any fluent f ,

〈f , s1〉 ∈ holds⇔ 〈f , s2〉 ∈ holds



Now specify the extension of the poss relation for an
activity a such that

〈a, s1〉 ∈ poss, 〈a, s2〉 6∈ poss

The activity a cannot realize any precondition axiom,
since the same simple state formula is realized by
both s1 and s2.
Now specify the extension of the holds relation for
the activity a such that

〈f ,do(a, s1)〉 ∈ holds, 〈f ,do(a, s2)〉 6∈ holds

The activity a cannot realize any effect axiom, since
the same simple state formula is realized by both s1
and s2. 2

On the other hand, the PSL Ontology explicitly ax-
iomatizes the classes of activities that realize the types
corresponding to basic action theories1

Theorem 5 Let MAA (Markovian Activity Assump-
tion) be the sentence

(∀a)activity(a) ⊃ markov precond(a)∧markov effect(a)

The ontology Tdisc state∪Tocctree∪Tpslcore∪MAA is
definably complete with respect to the set of basic action
theories.

It should be noted that Tdisc state ∪Tocctree ∪Tpslcore

alone is not definably complete, since there are mod-
els that do not realize precondition and effect axioms;
on the other hand, all models of Tdisc state ∪ Tocctree ∪
Tpslcore ∪MAA realize precondition and effect axioms.

We can also use this approach to show that several
approaches to ontologies are in fact specifying classes
of domain theories rather than ontologies.

This is prevalent in approaches to reasoning about
change that simply add a temporal argument to the set
of relations.

Furthermore, one cannot specify domain theories us-
ing axiom schemata, since there will typically be mutu-
ally inconsistent domain theories for the same ontology.

Classifying Domain Theories
We can use the notion of definable completeness of an
ontology to classify the domain theories for the ontol-
ogy. In particular, we can classify domain theories with
respect to the sets that are ∅-definable by the sentence
Φ such that T onto∪Φ is definably complete with respect
to the domain theories.

For example, by Theorem 5, Tdisc state ∪ Tocctree ∪
Tpslcore ∪MAA is definably complete; activities in the
set defined by the sentence MAA realize the types cor-
responding to basic action theories. Activities that are

1The axiomatization of markov precond in CLIF
(Common Logic Interchange Format) can be found at
http://www.mel.nist.gov/psl/psl-ontology/part42/
state precond.def.html
The axiomatization of markov effect in CLIF can be found
at http://www.mel.nist.gov/psl/psl-ontology/part42/
state effects.def.html

not in the set (that is, activities that do not satisfy the
sentence MAA) do not realize the types corresponding
to basic action theories. This gives a model-theoretic
definition of basic action theories, rather than simply a
syntactic definition.

Reasoning Problems
Many reasoning problems with ontologies (such as de-
cision problems for mathematical theories) incorporate
domain theories as well as the set of axioms in the on-
tologies themselves.

The Word Problem in group theory is specified for
a particular group and it requires both the axioms for
groups as well as the presentation for the group:

Tgroup ∪ Σpresentation |= (w = 1)

The query in this case is the product of group elements
w.

In a temporal reasoning problem, we consider a par-
ticular scenario of temporal constraints in addition
to the axioms for the time ontology, and determine
whether or not a particular temporal constraint is en-
tailed by the scenario:

Ttime ∪ Σscenario |= before(T1, T2)

For situation calculus, the antecedent of a reasoning
problem such as planning includes basic action theories,
while the query sentence is an existentially quantified
simple state formula:

Tsitcalc ∪ Σaction |= (∃s)Q(s)

In general, an entailment problem for an ontology
T onto has the form

T onto ∪ Σdt |= Σquery

where Σdt is a domain theory for T onto and Σquery is
a sentence in the language of the ontology. This leads
to the next question – what class of sentences in the
language of the ontology characterize the query?

Any sentence that is a query (that is, a sentence in
Σquery) can also be considered to be a domain theory.
For example, in the word problem for groups, the query
sentence is a group equation, which is a type for the
theory of groups. Similarly, simple state formulae are
types for fluents in situation calculus.

We can provide a model-theoretic characterization of
queries using the following notion:
Definition 8 A type p is isolated iff there is a formula
ϕ ∈ p such that for any ψ ∈ p, we have

T |= (∀v) ϕ(v) ⊃ ψ(v)

Queries therefore correspond to nonisolated types for
the ontology. Using this definition, we can also consider
queries to be weak domain theories, in the sense that
they are entailed by other domain theories. We can
therefore apply the earlier techniques for arbitrary do-
main theories to provide a characterization of the possi-
ble queries in reasoning problems that use a particular
ontology.



The same techniques that were used to characterize
all possible domain theories for an ontology by specify-
ing the types for the ontology can be used to character-
ize the queries by specifying the nonisolated types for
the ontology. We can also classify the queries for an on-
tology by characterizing the additional sentences that
are required in order for an ontology to be definably
complete with respect to the class of queries.

Summary
Although there is an intuitive distinction between the
formal ontology and the set of domain theories that use
the ontology, there has been no characterization of this
distinction. In this paper we have utilized the notions
of definable sets and types from model theory mathe-
matical logic to provide a semantic characterization of
the domain theories for an ontology that gives a clear
logical distinction between ontologies and domain the-
ories.

Domain theories for an ontology are the axiomatiza-
tion of definable sets in models of the ontology. This is
equivalent to saying that a domain theory for an ontol-
ogy is a boolean combination of finite partial n-types
for the ontology.

This characterization of domain theories serves as an
evaluation criterion for ontologies, which can in turn be
used to classify the domain theories for an ontology.

This lays the groundwork for a comprehensive
methodology for the evaluation of formal ontologies by
specifying the complete sets of n-types that are realized
in models of the ontologies.
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