
Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 1

Ontologies for Enterprise Integration

Mark S. Fox and Michael Gruninger

Department of Industrial Engineering,University of Toronto,

4 Taddle Creek Road, Toronto, Ontario M5S 1A4

tel:1-416-978-6823 fax:1-416-971-1373 internet:{msf, gruninger}@ie.utoronto.ca

Abstract

We present a logical framework for representing the agents in two different cooperating informa-

tion systems. We define an architecture for Integrated Supply Chain Management in which the

supply chain is managed by a set of intelligent agents responsible for one or more activities. We

also define an architecture for an enterprise engineering system that allows the exploration of a

variety of enterprise designs. We introduce the notion of an advisor as a formalization of the dif-

ferent perspectives that we have with respect to an enterprise. By representing activities in both

architectures as sets of first-order axioms in a microtheory, the tasks for the different agents in the

architecture can be represented as finding satisfying interpretations of the constraints.

1.0 Introduction

A necessary first step in the design of cooperative information systems is the precise definition of

the tasks performed by different components in the system and the ways in which they interact.

This specification is independent of the algorithms used to solve the tasks - we are specifying the

problem and what constitutes a solution to the problem. This requires the development of a formal

representation, or ontology, that is adequate for the specification.

In this paper we present two projects in the Enterprise Integration Laboratory at the University of

Toronto and the representation necessary to define the tasks of the various components in each

project. These projects are Integrated Supply Chain Management ([Fox et al 93b]) and Enterprise

Engineering ([Fox et al 93c]). In each case, the execution model is based on the Enterprise Man-

agement Network [Roboam & Fox 92], and is called the Enterprise Information Architecture

(EIA). The execution environment is composed of a set of functional and information (software)

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 2

agents, each of which performs continuously and autonomously. Functional agents perform activ-

ities, and information agents manage the distribution and consistency of information. For each of

the above projects, we give a formal specification of the agents and their capabilities.

The supply chain is a set of activities which span enterprise functions from the ordering and receipt

of raw materials through the manufacturing of products through the distribution and delivery to the

customer. We view the supply chain as being managed by a set of intelligent agents, each respon-

sible for one or more activities in the supply chain, and each interacting with other agents in the

planing and execution of their responsibilities.

Enterprise engineering is concerned with the design and execution of enterprises. The goal of the

enterprise engineering project is to formalize the knowledge required for business process reengi-

neering ([Davenport 93], [Hammer & Champy 93]) and create an environment that facilitates the

application of this knowledge to a particular company. First, we must formally represent the

knowledge found in enterprise engineering perspectives such as efficiency, activity-based costing,

quality, agility, and resource management. We must then integrate the knowledge into a software

tool that will support the enterprise engineering function by exploring alternative organization

models spanning organization structure and behaviour, analyzing each alternative, provide guid-

ance to the designer, and automatically execute some task. Each perspective is implemented as an

agent, which we call an advisor, in the enterprise integration architecture.

Enterprise execution focuses on the implementation of an enterprise design. In particular, it is con-

cerned with both monitoring the performance of enterprise as specified by the model, and execut-

ing tasks that can be automated. Given an enterprise design, we should be able to deduce what the

organization structure of the enterprise information system should be, the functional agents and

their assigned activities, and how information is to be distributed and maintained across the net-

work in order to support the functional agents.

In order to support the integration of supply chain agents and enterprise engineering perspectives,

it is necessary for there to exist a shareable representation of knowledge about the enterprise that

each agent can jointly understand and use and that minimizes ambiguity in communication. The

enterprise model must also support deductive query processing. In this paper, we will first present

the ontologies and theories that are necessary to specify the agents in each project, and then exam-

ine each project in detail.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 3

2.0 Common Sense Enterprise Modelling

Enterprise modelling is an essential component in defining an enterprise.The goal of our enterprise

modelling research is to create a generic, reusable representations of Enterprise Knowledge that

can be reused across a variety of enterprises. Towards this end, we have been developing the TOVE

enterprise ontology [Fox et al 93]. An ontology is a formal description of entities and their proper-

ties; it forms a shared terminology for the objects of interest in the domain, along with definitions

for the meaning of each of the terms. TOVE provides a rich and precise representation of generic

knowledge, such as, activities, processes, resources, time, and causality, and of more enterprise ori-

ented knowledge such as cost, quality and organization structure.

The basic entities in our model are represented as objects with specific properties and relations. Ob-

jects are structured into taxonomies. Definitions of objects, attributes and relations are specified in

first-order logic, where possible. We then define an ontology in the following way. We first iden-

tify the objects in our domain of discourse; these will be represented by constants and variables in

our language. We then identify the properties of these objects and the relations that exist over these

objects; these will be represented by predicates in our language.

We next define a set of axioms in first-order logic to represent the constraints over the objects and

predicates in the ontology. This set of axioms constitutes a microtheory ([Lenat & Guha 90]) and

provides a declarative specification for the various tasks we wish to model.

Intuitively, the axioms in the microtheory enable the model to deduce answers to questions that

one would normally assume can be answered if one has a “common-sense” understanding of the

enterprise. To formalize this intuition we also need to prove results about the properties of our

microtheories in order to provide a characterization and justification for our approach; this

enables us to understand the scope and limitations of the approach. We use a set of problems,

which we call competency questions, that serve to characterize the various ontologies and micro-

theories in our enterprise model. The microtheories must contain a necessary and sufficient set of

axioms to represent and solve these questions. It is in this sense that we can claim to have an ade-

quate microtheory appropriate for a given task, and it is this rigour that is lacking in previous

approaches to enterprise engineering and integrated supply chain management.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 4

The functional specifications of the agents in the supply chain and advisors in the enterprise engi-

neering environment will serve as competency questions for the ontologies and microtheories

which we will be presenting. The ontologies must be able to represent the tasks for the agents and

also specify what constitutes a solution for these tasks.

2.1 Activities, States, and Time

The formalization of the notion of process and activity is crucial in any attempt at representing an

enterprise or supply chain. Activities are the basic events that specify a transformation on the world

[Fox et al. 93]. States specify what must be true for an activity to be performed, and what is true

once the activity is completed. Activities are initiated at points in time, and once initiated, they

have duration over some interval of time. Further, properties of states hold over the duration of

these activities.

There are four kinds of states: use(s,r,a), consume(s,r,a), release(s,r,a), produce(s,r,a). These pred-

icates relate the state s with the resource r required by the activity a. Intuitively, a resource is used

by an activity if none of the properties of the resource are changed when the activity is successfully

terminated and the resource is released. A resource is consumed or produced if some property of

the resource is changed after termination of the activity.

States are assigned a status, defined by the following predicates: possible(s,r,a), committed(s,r,a),

enabled(s,r,a), completed(s,r,a). A set of actions is defined that change the status of a state; these

actions are parametrized by the state and the activity, and have the form commit(s,r,a), enable(s,-

r,a), complete(s,r,a), disenable(s,r,a).

We use the extended situation calculus in [Pinto and Reiter 93] to represent change and time. All

actions occur in situations, and the start of a situation is assigned a time by the function start(σ).

We use the predicate holds(f, σ) to represent that the property f is true in situation σ. For each action

we have a set of effect axioms that define the changes caused by the actions. We also introduce the

predicate occurs(a,σ) to denote an action a that occurs in situation σ; the predicate occursT(a,t)

represents an action a that occurs at time t.

Essentially, an activity consists of a sequence of actions that commit, enable, and complete states.

These actions may be partially ordered; once the actions in an activity have been totally ordered,

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 5

we then assign times to the situations in which the actions occur. Thus activities will be represented

by an existential sentence of the form:

occurs(a,σ) ≡ (∃ σ1,...,σn,t1,...tn) occurs(enable(s1,r,1,a), σ1) ∧... ∧ occurs(enable(sk,rm,a), σi)

∧occurs(complete(s1,r,1,a), σi+1) ∧ ... ∧ occurs(complete(sk,rm,a), σn) ∧ occursT(enable(s1,r,1,a),

t1) ∧ ... ∧ occursT(enable(sk,rm,a), ti) ∧ occursT(complete(s1,r,1,a), ti+1) ∧ ... ∧ occursT(com-

plete(sk,rm,a), tn)

A schedule will consist of a set of activities with an ordering over the situations and times in which

the actions occur. Note that the specification of the activity does not place any constraints on this

ordering; as we will see in the next section, these constraints are posted by the different agents or

advisors in the system.

We can represent the nondeterministic choice of some resource in a set of resources r1,...,rn for an

activity by the sentence

occurs(enable(s1,r1,a),σ) ∨ ... ∨ occurs(enable(sn,rn,a),σ)

Using this representation of activities, we can predict what properties of the world must be true at

some point in a plan or schedule; this can be used when monitoring the execution of the schedule

to determine whether the schedule must be modified in the face of unexpected events.

2.2 Resources

All activities require that some objects be available at the time that the activity is performed; this

is the motivation for a theory of resources. The various properties that are axiomatized in the mi-

crotheory include resource commitment and the availability of resources [Fadel et al 93].

Resource requirements for activities over some time interval starting at t and ending at t′ are rep-

resented by the predicates use_spec(r,a,q,t,t′) and consume_spec(r,a,q,t,t′), where q is the quantity

of the resource r that is used or consumed by the activity a. It is assumed that for any enterprise,

the resource requirements for all activities are completely determined.

The microtheory of resources represents the quantity q of a resource r with the predicate rp(r,q).

Thus the quantity of a resource in some situation σ is represented by holds(rp(r,q), σ). The amount

q of a resource r committed to an activity a between times t and t′ is represented by the predicate

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 6

committed_to(r,a,q,t,t′). The total amount of a resource committed to all activities at time t is rep-

resented by the predicate total_committed(r,q,t). These predicates are changed as effects of the ac-

tions commit, enable, and complete.

One of the central problems in the design of an enterprise or schedule is deciding whether a re-

source can support multiple activities that must execute over the same time interval, including the

interaction between preconditions of activities preventing them from executing concurrently. This

is determined by the axioms defining the predicate available_for(a,r,q,t,t′) [Fadel et al 93]. These

axioms in the microtheory for resources represent additional constraints that must be placed on the

ordering of situations and starting times in the definition of an activity.

2.3 Quality

The work in this domain is concerned with creating a terminology that spans quality concepts

found in ISO9000, Baldridge Award, etc. [Kim & Fox 93]. In particular, it uses a microtheory of

ISO 9003 compliance. The ISO 9003 requirements can be divided into those that can be met by

just one process (locally compliant requirements) and those that require several or all processes of

an enterprise (globally compliant requirements). For example, to satisfy ISO 9003 local compli-

ance, there must exist processes that perform product identification, inspection and testing, identify

test status, control nonconformity, and arrange for handling of products as stated by the axioms in

the microtheory.

2.4 Activity-based Costing

The goal of this ontology is to formalize the concepts found in activity-based costing. Given a set

of activities and the resources required by these activities, we must be able to assign costs based

on the usage and consumption of these resources.

For every resource and status of a state associated with the resource, we have complete knowledge

of the cost accrued by using or consuming the resource as a function of time. Additional axioms

compute the cost associated with an activity by summing the costs for each state and each status

over the time in which the activity was executing. If we know the starting times for each action in

an activity that changes the status of a state, then the axioms of the cost microtheory uniquely de-

termine the cost assigned to the activity.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 7

3.0 The Architecture of ISCM

The Integrated Supply Chain Management (ISCM) is composed of a set of cooperating agents,

where agent performs one or more supply chain management function, and coordinates its deci-

sions with other relevant agents. Each functional agent is responsible for the planning and control

of a set of activities in the supply chain. Information agents support other agents by providing in-

formation and communication services.

The decomposition of supply chain functions and their allocation to agents represents one of the

first tasks in the project. The problem is that existing decompositions of functions, as found in MRP

systems today, arose out of organizational constraints, legacy systems, and limitations on algo-

rithms. We are currently working on five functional agents: Logistics, Transportation Manage-

ment, Resource Management, Scheduling and Dispatching.

Agents are constraint-based problem solvers: given a set of goals and constraints, they search for

a solution that optimizes the goals and satisfies the constraints. Agents also have the ability to

generate more than one solution, thereby the enabling the consideration of alternatives and trade-

offs by a set of cooperating agents. The goals and constraints for an agent are represented by sen-

tences in the microtheories associated with the agent; satisfying the constraint is equivalent to

finding a satisfying interpretation for the microtheory. Agents communicate by posting new con-

straints that must be satisfied. Coordination occurs when agents not only satisfy their own internal

constraints but also the constraints of other agents. Negotiation occurs when constraints that can-

not be satisfied are modified by the subset of agents directly concerned.

All agents exist within an Enterprise Information Architecture (EIA) that provides a distributed

information environment. Figure 1 shows the relationship among the various functional and infor-

mation agents in the EIA. We will now examine the functional agents in more detail.

Information agents are responsible for maintaining a consistent form of shared information

among agents, aggregating information to produce reports and answer queries, propagating

changes in the state of the modeled enterprise over the models of various agents, and resolving

inconsistencies that arise during agent interaction.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 8

FIGURE 1. The ISCM agents

3.1 Functional Agents

Given the representation of activities and time in our microtheories, we view the planning/sched-

uling function as the computational core of the integrated supply chain. In fact, scheduling is done

at several levels by the Logistics, Scheduling, Dispatching, and Transportation agents. In this sec-

tion we examine in detail the tasks of each of these supply chain agents.

Scheduling agent. This agent is responsible for scheduling and rescheduling activities in the fac-

tory and exploring hypothetical “what-if” scenarios for potential new orders.

Recall that activities are represented as existential sentences and other sets of axioms that repre-

sent additional constraints. A schedule is constructed by combining the sentences that define the

activities, and then specifying the ordering over the situations and starting times for actions in the

activity definitions so that the goals of the logistics agent are satisfied. In addition, the specifica-

tion of an activity may include nondeterministic actions, such as selecting a machine from some

set of machines to be used by an activity. To the extent that the schedule does not completely

determine the sequence of actions in an activity, it provides degrees of freedom in the schedule for

Order Acquisition

Scheduling
Resource

Management

Dispatching

Transportation
Management

Logistics

Information
Agent

Information
Agent

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 9

the dispatcher to work with. Thus the scheduling agent is constructing a satisfying interpretation

of a set of sentences. This set includes the sentences defining the activities that must be executed

in the schedule, the microtheories of activities, states, time, and resources, and any domain-depen-

dent constraints. These additional constraints that the scheduler must satisfy may be deadline con-

straints such as

(∃ σ) holds(rp(desk_lamp, 100), σ) ∧ start(σ) < t1

or constraints on the times of actions such as

occursT(a1,t1) ∧ occursT(a2,t2) ⊃ t2 - t1 > 10

The hypothetical reasoning capabilities for the scheduling agent are the focus of current work.

Dispatching agent. Given degrees of freedom in the schedule, the dispatcher makes decisions as

to what to do next by adding enough new constraints to the axioms defining the schedule so that

there is a unique satisfying interpretation of the axioms. This includes fixing start times of situa-

tions and choosing specific resources required by the actions.

Given a schedule, the dispatcher also monitors the status of the factory floor and availability of

resources, and communicates deviations in the schedule to the scheduling agent for repair. This

involves determining the failure if actions and violated preconditions, as well as violated start

times or durations of activities in the schedule. Any of these events serve as new constraints that

are given to the scheduling agent to construct a new schedule.

Resource agent. This agent dynamically manages the availability of resources so that the sched-

ule can be executed. It estimates resource demand, determines resource order quantities, generates

purchase orders and monitors the delivery of resources.

The resource agent may decide that a schedule is infeasible because there are insufficient

resources available; in this case we have

(∃ σ) holds(rp(r,q), σ) ∧ q < 0

The quantity of a resource is completely known at all points during the schedule; this is guaran-

teed by the effect axioms in the microtheory of resources.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 10

If a schedule is infeasible due to the lack of resources, the resource agent generates purchase

orders to obtain the resources from suppliers. The representation of purchase orders is the focus of

current research; the problem is that the delivery of the resources from the suppliers is an event

external to the schedule whose occurrence is a necessary precondition for activities in the sched-

ule.

Logistics agent. This agent is responsible for coordinating multiple-plants, multiple-supplier, and

multiple-distribution centers of the enterprise by generating a global schedule that is given to the

scheduling agents in each factory who perform more detailed scheduling. The logistics agent also

specifies goals (orders for products) that the scheduling agent must achieve. In this sense, the rela-

tionship between the logistics and scheduling agents is analogous to the relationship between the

scheduling agent and the dispatcher.

The logistics agent also manages the movement of products or materials across the supply chain

from the supplier of raw materials to the customer of finished goods. It thus introduces new con-

straints of the form

(∃ σ) holds(rp(desk_lamp, 100), σ) ∧ holds(located(Calgary, desk_lamp, 100), σ) ∧ start(σ) < t1

that serve as goals for the transportation agent.

Transportation agent: This agent is responsible for the assignment and scheduling of transporta-

tion resources in order to satisfy the goals (inter-plant movement requests) specified by the Logis-

tics Agent.

4.0 Architecture for Enterprise Engineering

The Enterprise Engineering system is composed of four main components: its common-sense

enterprise model, advisors, visualization, and information agents (see Figure 1). Various perspec-

tives exist in an enterprise, such as efficiency, quality, and cost. Any system for enterprise engi-

neering must be capable of representing and managing these different perspectives in a well-

defined way. These ideas are formalized in the notion of advisors that are able to analyze, guide,

and make decisions about the current enterprise and possible alternatives. Within the enterprise

integration architecture, these advisors are implemented as agents that operate autonomously on

the current enterprise design.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 11

Figure 2: Enterprise Engineering Architecture

4.1 Advisors

The best enterprise design is one that optimises each of the perspectives that exist in the enter-

prise. Examples of enterprise perspectives include: Quality, Cost, Efficiency, and Agility. We are

developing for each perspective a theory of design that results in the optimization of the perspec-

tive. The theory incorporates the ability to measure a partial/complete design and to guide the

designer in the decision making.

To formalize the intuition of design perspectives, we introduce the notion of advisors. An advisor

is an encapsulation of one or more micro-theories. It has the ability to analyse, guide and make

design decisions. We are currently constructing advisors for Efficiency, Activity-based Costing,

Resource Management, and ISO9000; we anticipate advisors for goals and objectives, and organi-

zation structure. In each case, we define the tasks, purpose, and responsibilities of the advisor, and

Cost
Advisor Advisor Advisor Advisor

Efficiency Quality Agility

Enterprise Model

Visualizer/Browser

Enterprise Model

Enterprise Monitoring

Task Execution

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 12

represent these tasks using the appropriate ontology. As with the competency questions in the first

section, each advisor is rigorously characterized by these tasks. This includes specifying what an

advisor is analyzing and in what way that they guide (propose different alternatives).

Advisors are not independent of each other. Each of the microtheories implemented in the advi-

sors is closely related to the other microtheories, and this leads to a close interdependency among

the different perspectives. The status of activities is dependent on the times at which its resources

are available. Resource usage constraints may play an important role in the quality of a product.

As we can see from the axioms of the cost microtheory, there is an interaction between cost and

the temporal structure of activities in a process, since the cost is dependent on the status of an

activity, such as when it is executing and when it has been suspended. All of these relationships

provide different perspectives on the processes in an enterprise, as captured in the advisors. As

with the agents in the integrated supply chain, we exploit the representation of advisors as sets of

axioms in the associated microtheories. Advisors interact through the communication of con-

straints in each microtheory; the tasks of an advisor that require interaction with other advisors

can then be represented as finding a satisfying interpretation of the union of constraints arising

from each relevant advisor.

4.1.1 Efficiency Advisor

The modelling task provides ontologies that can be used to construct a model of the activities of a

process, temporal relations over these activities, and constraints on the usage of resources by the

activities. Based on these models the efficiency advisor provides tools to design, analyze and

evaluate the enterprise from the perspective of optimising efficiency. For example, it can perform

a critical path analysis of an activity graph or process, or it may simulate a process if more com-

plex activity behaviours are involved.

A fundamental capability of the advisor is to evaluate a set of activities and determine whether or

not it satisfies certain integrity constraints. An enterprise should have no “black holes” (resources

that are produced but not consumed by other processes or shipped as final products). An enter-

prise should have no “miracles” (resources produced by a process for which there are no

resources consumed). All resources that are used must be released. All resources must be used,

consumed, or produced. We can represent these constraints by sentences which must be satisfied

by all sets of activities:

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 13

(∀a)(∃ s,r) produce(s,r,a)

(∀a)(∃ s,r) consume(s,r,a)

(∀a)(∃ s,r) consume(s,r,a) ⊃ (∃ s′,a′) release(s′,r,a′)

(∀s,r,a) use(s,r,a) ∨ consume(s,r,a) ∨ produce(s,r,a)

The efficiency advisor must also be able to represent and model the current status of the process

and assess potential changes. This is essential if the advisor is required to guide the designer by

presenting alternatives. For example, we may need to know if a process would be more efficient

given one ordering of activities rather than another. This may entail identifying the resources that

prevent activities from being performed concurrently and thus anticipate resource conflicts that

lead to bottlenecks. Such resources would be identified using the axioms for available in the

microtheory of resources.

4.1.2 Quality Advisor

Now consider the notion of a ISO9000 advisor, which uses a microtheory of ISO 9003 compli-

ance [Kim & Fox 93]. This microtheory introduces axioms to represent the ISO 9003 require-

ments and axioms defining how an organization can be ISO 9003 compliant. The primary

decision-making capability of the quality advisor is therefore determining whether an organiza-

tion is ISO 9003 compliant.

Recall that to satisfy ISO 9003 local compliance, there must exist processes that perform product

identification, inspection and testing, identify test status, control nonconformity, and arrange for

handling of products as stated by the axioms in the microtheory. An advisor can use this axiom in

several different ways. It can be used to analyze a process within the enterprise and decide com-

pliance by verifying the existence of the necessary processes. It can also be used by a designer by

recommending the appropriate quality control processes that must be included in order to satisfy

local compliance. Thus the advisor determines which activities comply with the ISO 9000 stan-

dard, which activities do not comply, and the reason why they do not comply.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 14

4.1.3 Cost Advisor

One task is to perform an activity-based costing analysis of a resource that is produced by some set

of activities, including the cost of every resource and activity that are necessary to produce the re-

source. This requires the ability to recursively determine which activities establish preconditions

for the activity that actually produces the resource.

5.0 Current Status

We have developed ontologies for: activities and states, time, resources, quality, and cost. Advisors

and their corresponding microtheories are under development for resource management, activity-

based costing and ISO9000 quality compliance. A “virtual factory”, called TOVE, has been de-

fined using the ontology, and serves as a testbed for research into enterprise integration. It is im-

plemented in C++ using the ROCK knowledge representation tool from Carnegie Group. The

axioms in the various microtheories are implemented using Quintus Prolog which is integrated

with the knowledge base in ROCK.

We have also developed a distributed simulation environment called TOVESim which oversees

the execution of events and maintains time across multiple agents spread across the internet. We

are currently working on extending the ontologies, advisors and the ideas for enterprise visualiza-

tion discussed in this paper.

6.0 Conclusions

In this paper, we have proposed that the knowledge implicit in engineering practice must be for-

mally represented and characterized through ontologies and microtheories. This formalization

provides the foundation for the other components of the system.

We have presented an architecture for integrated supply chain management in which the supply

chain is managed by a set of intelligent agents responsible for one or more activities. By repre-

senting activities as sets of axioms in our microtheory, the tasks for the different agents in the sup-

ply chain can be represented as satisfying constraints. Coordination among agents is achieved by

communicating constraints.

Submitted to CoopIS-94 AREA: RESEARCH

November 30, 1993 15

We have also defined an architecture for an enterprise engineering system that allows the explora-

tion of a variety of enterprise designs. In order to integrate this knowledge into a software tool that

will support enterprise engineering functions, we introduced the notion of an advisor as a formal-

ization of the different perspectives that we have with respect to an enterprise. The notion of advi-

sors leads to the architecture presented in Figure 2 and it enables us to automate the execution of

certain enterprise engineering tasks. This also allows us to represent workflow monitoring and

execution within the same framework.

7.0 References

[Davenport 93] Davenport, T.H. Process Innovation: Reengineering Work through Information

Technology. Harvard Business School Press, 1993.

[Fadel et al] Fadel, F., Fox, M.S. , Gruninger M. A Resource Ontology for Enterprise Modelling

(submitted).

[Fox et al. 93] Fox, M.S., Chionglo, J., Fadel, F. A Common-Sense Model of the Enterprise, Pro-

ceedings of the Industrial Engineering Research Conference 1993.

[Kim & Fox 93] Kim, H. and Fox, M.S. Quality Systems Modelling: A Prospective for Enterprise

Integration, Fourth Annual Meeting of the Production and Operations Management Society.

1993.

[Hammer & Champy 93] Hammer, M. and Champy J. Reengineering the Corporation. Harper

Business, 1993.

[Lenat & Guha 90] Lenat, D. and Guha, R.V. Building Large Knowledge-based Systems: Repre-

sentation and Inference in the CYC Project. Addison Wesley, 1990.

[Pinto & Reiter 93] Pinto, J. and Reiter, R. Temporal reasoning in logic programming: A case for

the situation calculus. In Proceedings of the Tenth International Conference on Logic Program-

ming (Budapest, June 1993).

[Roboam & Fox 92] Roboam, M. and Fox, M.S. Enterprise Management Network Architecture,

Artificial Intelligence Applications in Manufacturing. AAAI Press / MIT Press, 1992.

