
The Knowledge Engineering Review, Vol. 13:1, 1998, 91±120 (KER 13101)
Printed in the United Kingdom
Copyright# 1998, Cambridge University Press

The Process Interchange Format and Framework

J I N TAE L E E 1 , M I CHAEL GRUN INGER 2 , YAN J I N 3 ,

THOMAS MALONE 4 , AU S T I N TAT E 5 , GREGG YO S T 6 a n d OTHER

MEMBER S OF THE P I F WORK ING GROUP *
1Department of Decision Sciences, University of Hawaii, 2401 Maile Way, Honolulu, HI 96822, USA
2Department of Industrial Engineering, University of Toronto,
3Department of Civil Engineering, Stanford University,
4Center for Coordination Science, MIT,
5Arti®cial Intelligence Applications Institute, University of Edinburgh,
6Digital Equipment Corporation

Abstract

This document provides the speci®cation of the Process Interchange Format (PIF) version 1.2. The

goal of this work is to develop an interchange format to help automatically exchange process

descriptions among a wide variety of business process modelling and support systems such as

work¯ow software, ¯ow charting tools, planners, process simulation systems and process reposi-

tories. Instead of having to write ad hoc translators for each pair of such systems each system will

only need to have a single translator for converting process descriptions in that system into and out

of the common PIF format. Then any system will be able to automatically exchange basic process

descriptions with any other system. This document describes the PIF-CORE 1.2, i.e. the core set of

object types (such as activities, agents and prerequisite relations) that can be used to describe the

basic elements of any process. The document also describes a framework for extending the core set

of object types to include additional information needed in speci®c applications. These extended

descriptions are exchanged in such a way that the common elements are interpretable by any PIF

translator, and the additional elements are interpretable by any translator that knows about the

extensions. The PIF format was developed by a working group including representatives from

several universities and companies, and has been used for experimental automatic translations

among systems developed independently at three of these sites. This document is being distributed in

the hopes that other groups will comment upon the interchange format proposed here, and that this

format (or future versions of it) may be useful to other groups as well. The PIF Document 1.0 was

released in December 1994, and the current document reports the revised PIF that incorporate the

feedback received since then.

1 Introduction

More and more companies today are attempting to improve their business by engaging in some

form of Business Process Redesign (BPR). BPR focuses on a ``process view'' of a business, and

attempts to identify and describe an organization's business processes; evaluate the processes to

identify problem areas; select or design new processes, possibly radically di�erent from those

currently in place; predict the e�ects of proposed process changes; de®ne additional processes that

will allow the organization to more readily measure its own e�ectiveness; and enact, manage and

*The PIFWorking Group consists of people from industry and academia who are actively participating toward
the development of PIF. There is also the PIF Comments Group (pif-comments@mit.edu), which consists
of people who want to keep track of the progress on PIF without active participation. The PIF Home Page can

be found at http://soa.cba.hawaii.edu/pif/. Your comments are always appreciated. Please address
them to pif-comments@mit.edu or jl@hawaii.edu.

monitor the new processes. The goal is a leaner, more e�ective organization that has better insight

into how it does business and how its business processes a�ect the organization's health. Successful

BPR projects involve the cooperation of many people over extended time periods, including

workplace analysts, systems engineers, and workers at all levels of the organization.

Computer applications that support one or more aspects of BPR are becoming increasingly

common. Such applications include:

. Modelling tools that help a workplace analyst identify and describe an organization's processes.

. Process editors and planning aids to synthesize new processes or to modify existing processes.

. Process library browsers that help organizations ®nd new processes that might better meet their

needs.

. Process animators and simulators that help organizations visualize the e�ects of existing

processes or potential new processes.

. Work¯ow management tools that help workers follow business processes.

. Outcomes analysis tools that help organizations monitor the e�ectiveness of their processes.

No single application supports all aspects of a BPR engagement, nor is it likely that such an

application will ever exist. Furthermore, applications that do support more than one aspect rarely

do them all well. For example, a work¯ow tool may also provide some process simulation

capabilities, but those additional capabilities are unlikely to be on par with the best dedicated

simulation applications. This is to be expectedÐbuilding an application that supports even one of

these aspects well requires a great deal of specialized knowledge and experience.

Ideally, then, a BPR team would be able to pick a set of BPR-support applications that best suits

their needs: a process modeling tool from one vendor, a simulator from another, a work¯ow

manager from another, and so forth. Unfortunately, these applications currently have no way to

interoperate. Each application typically has its own process representation (often undocumented),

and many applications do not provide interfaces that would allow them to be easily integrated with

other tools.

Our goal with the PIF project is to support the exchange of process descriptions among di�erent

process representations. The PIF project supports sharing process descriptions through a descrip-

tion format called PIF (Process Interchange Format) that provides a bridge across di�erent process

representations. Tools interoperate by translating between their native format and PIF.1

There are several process representation languages such as LOTOS and IDEF, which could be

potentially used for the purpose of sharing process descriptions. However, most of these languages

are originally designed to satisfy a speci®c set of domain and task needs. PIF di�ers from them for

being a translation language or an interlingua by design. As discussed in section 3, this di�erence

yields a di�erent set of design tradeo�s. Generality is preferred over e�ciency. Extensibility is

critical as any process representation language is unlikely to ever completely suit the needs of all

applications that make use of business process descriptions. Therefore, in addition to the PIF

format, we have de®ned a framework around PIF that accommodates extensions to the standard

PIF description classes. The framework includes a translation scheme called Partially Shared Views

that attempts to maximize information sharing among groups that have extended PIF in di�erent

ways.

1It is important to understand that a process speci®cation in PIF will be utilized in a context where it is passed to
a person, tool or system in such a way that the task to be performed on it is understood (e.g. analyse the
speci®cations for certain features, perform a simulation using the speci®cation, execute a process which meets
the speci®cation, avoid executing any process which meets the speci®cation, etc.). This imperative information

about the task to be performed with a PIF process speci®cation is not represented in the speci®cation itself, but
should be considered as the context within which the speci®cation is used.
It is also worth noting that PIF is not intended as a solution to the problem of multiple descriptions in

translation. Any language with su�cient expressiveness will permit multiple ways of describing the same thing.
PIF does not claim to be a canonical language in which all the sentences with the same meaning will be
expressed in exactly one way. Hence, multiple descriptions in the source language may or may not translate to

the same PIF expression depending on the way that the translator maps the source language to PIF.

j . l e e e t a l . 92

The PIF framework aims to support process translation such that:

. Process descriptions can be automatically translated back and forth between PIF and other

process representations with as little loss of meaning as possible. If translation cannot be done

fully automatically, the human e�orts needed to assist the translation should be minimized.

. If a translator cannot translate part of a PIF process description to its target format, it should:

ÐTranslate as much of the description as possible (and not, for example, simply issue an error

message and give up).

ÐRepresent any untranslatable parts as such and present them in a way that lets a person

understand the problem and complete the translation manually if desired.

ÐPreserve any uninterpretable parts so that the translator can add them back to the process

description when it is translated back into PIF.

These requirements on the translators are very important. We believe that a completely standar-

dized process description format is premature and unrealistic at this point. Therefore, as mentioned

earlier, we have provided ways for groups to extend PIF to better meet their individual needs. As a

result, we expect that PIF translators will often encounter process descriptions written in PIF

variants that they can only partially interpret. Translators must adopt conventions that ensure that

items they cannot interpret are available for human inspection and are preserved for later use by

other tools that are able to interpret them. Section 6 describes PIF's Partially Shared Views

translation scheme, which we believe will greatly increase the degree to which PIF process

descriptions can be shared.

2 History and current status

The PIF project began in October 1993 as an outgrowth of the Process Handbook project (Malone

et al., 1993) at MIT and the desire to share process descriptions among a few groups at MIT,

Stanford, the University of Toronto and Digital Equipment Corporation. The Process Handbook

project at the MIT Center for Coordination Science aims to create an electronic handbook of

process models, their relations and their tradeo�s. This handbook is designed to help process

designers analyse a given process and discover innovative alternatives. The Spark project at Digital

Equipment Corporation aims to create a tool for creating, browsing and searching libraries of

business process models. The Virtual Design Team (VDT) project at Stanford University aims to

model, simulate and evaluate process and organization alternatives. The Enterprise Modeling

project at the University of Toronto aims to articulate well-de®ned representations for processes,

time, resources, products, quality and organization. These representations support software tools

for modeling various aspects of enterprises in business process reengineering and enterprise

integration.

In one way or another, these groups were all concerned with process modelling and design.

Furthermore, they stood to bene®t from sharing process descriptions across the di�erent represen-

tations they used. For example, the Enterprise Modelling group might model an existing enterprise,

use the Process Handbook to analyse its tradeo�s and explore its alternatives, evaluate the di�erent

alternatives via VDT simulation, and then ®nally, translate the chosen alternative back into its own

representation for implementation.

Over the past years, through a number of face-to-face, email and telephone meetings, the PIF

Working Group members have:

. Articulated the requirements for PIF.

. Speci®ed the core PIF process description classes.

. Speci®ed the PIF syntax.

. Elaborated the Partially Shared View mechanism for supporting multiple, partially overlapping

class hierarchies.

The PIF and framework 93

. Created and maintained a database of the issues that arose concerning PIF's design and the

rationales for their resolutions.

. Implemented several translators, each of which translated example process descriptions (such as

a portion of the ISPW-6 Software Change Process) between PIF and a group's own process

representation.

. Used the translators to port process descriptions across heterogeneous representations (between

Kappa PC representation and Lotus Notes representation of process handbook data).

Based on this work, the PIF Document 1.0 was released on December 1994. Since then, we have

received a number of questions and comments on topics that range from individual PIF constructs

to how certain process descriptions can be represented in PIF. We have been also assessing the

adequacy of the PIF 1.0 by testing it against more complex process descriptions than before. AIAI

at the University of Edinburgh also joined the PIFWorking Group at this time, bringing along their

interests in planning, work¯ow and enterprise process modelling. The Edinburgh group is also

providing a valuable service as a liaison between the PIF group and the Work¯ow Management

Coalition as well as the AI planning community (in particular the DARPA/Rome Laboratory

Planning Initiative) which has been concerned with the activity representation issues for a while. The

Ontology Group at the Stanford University has also joined the PIF Working Group, and is sharing

the lessons from its experiences in providing the ontology library and the editor.

The revised structure of PIF re¯ects the lessons extracted from these external and internal input.

In particular, two points emerged clearly. One is that the PIF-CORE has to be reduced to the bare

minimum to enable translation among those who cannot agree on anything else. The other point is

the importance of structuring PIF as a set of modules that build on one another. This way, groups

with di�erent expressive needs can share a subset of the modules, rather than the whole monolithic

set of constructs. As a result, the PIF-CORE has been reduced to the minimum that is necessary to

translate the simplest process descriptions and yet has built-in constructs for ``hanging o�'' modules

that extend the core in various ways.

Recently we have been working with other groups whose aim is also to share process descriptions

though in their own domains. The goal of the Process Speci®cation Language (PSL) project at NIST

is to facilitate process sharing in the domain of manufacturing. It has ®nished compiling the list of

requirements that a process speci®cation language should satisfy, and is evaluating the existing

process representations with respect to these requirements. We are working with the PSL group in

assessing these requirements and comparing the di�erent process representations in the hope that

the PSL will be compatible with PIF. The goal of the Work¯ow Process Description Language

(WPDL) is to be an interlingua for sharing work¯ow descriptions. We have compared the WPDL

with PIF, identi®ed similarities and di�erences, and are communicating with them to make both

PIF and WPDL interoperable.

3 PIF overview

The PIF ontology has grown out of the e�orts of the PIF Working Group to share process

descriptions among the group members' various tools. We have used the following guidelines in

developing this hierarchy:

. Generality is preferred over computational e�ciency when there is a tradeo�, for the reason that

PIF is an interchange language, not a programming language designed for e�cient execution2.

Therefore, the organization of the entity classes is not necessarily well-suited to performing any

particular task such as work¯ow management or process simulation. Instead, our goal has been

2Although PIF is not an execution language, an execution language can be PIF-compliant. That is, an
execution language can be designed to include the PIF constructs as a part of it so that it does not require a

translator to process a set of PIF speci®cations.

j . l e e e t a l . 94

to de®ne classes that can express a wide variety of processes, and that can be readily translated

into other formats that may be more suitable for a particular application.

. The PIF constructs should be able to express the constructs of some existing common process

representations such as IDEF (SADT) or Petri nets.

. PIF should start with the minimal set of classes and then expand only as it needs to. The minimal

set was decided at the ®rst PIF Workshop (October 1993) by examining those constructs

common to some major existing process representations and to the process representations used

by members of the PIF Working Group.

. Additions to the standard PIF classes could be proposed by anybody, but the proposal had to be

accompanied by concrete examples illustrating the need for the additions. The Working Group

decided, through discussions and votes if necessary, whether to accept the proposal. PIF allows

groups to de®ne local extensions at will (see section 6), so new classes or attributes should be

added to the standard PIF classes only if they seem to be of su�ciently general usefulness.

A PIF process description consists of a set of frame de®nitions (cf. Appendix I and II), which are

typically contained in a ®le. Each frame de®nition refers to an entity instance and is typed (e.g.

ACTIVITY, OBJECT, TIMEPOINT) and they form a class hierarchy (see Figure 1). A frame

de®nition has a particular set of attributes de®ned for it. Each of the attributes describes some aspect

of the entity. For example, a PERFORMS de®nition has an Actor and an Activity attributes that

speci®es who is performing which activity. The instance of a frame de®nition has all the attributes of

all of its superclasses, in addition to its own attributes. For example, all the instances of ACTIVITY

have the Name attribute, since ENTITY, which is a superclass of ACTIVITY, has the Name

attribute.

When an attribute of one frame has a value that refers to another frame, the attribute represents a

relationship between the two instances that the two frames refer to. For example, if the Begin

attribute of ACTIVITY-1 takes TIMEPOINT-32 as its value, then the Begin attribute represents a

relationship between the ACTIVITY-1 and TIMEPOINT-32 instances. The value of a given

attribute in a PIF ®le holds independent of time. Figure 2 depicts the relationships among the PIF

classes. Section 5 describes all of the current PIF classes.

Figure 1 The PIF class hierarchy

The PIF and framework 95

An attribute in a PIF entity can be ®lled with the following and only the following PIF

expressions: a literal value of a PIF primitive value type or an expression of a composite value

type. The PIF primitive value types consist of: NUMBER, STRING, and SYMBOL:

. NUMBER: A numeric value. The NUMBER type is subdivided into INTEGER and FLOAT

types.

. STRING: A sequence of characters.

. SYMBOL: Symbols are denoted by character sequences, but have somewhat di�erent properties

than strings. PIF symbols are a much-simpli®ed version of symbols in the Lisp programming

language (Steele, 1990). In PIF, the main di�erence between strings and symbols is that symbols

have their references (e.g. variables and constants) and are not case-sensitive unless specially

quoted, whereas strings are always case-sensitive.

The PIF composite value types consist of: LIST and PIF-SENTENCE.

. LIST: A list.

. PIF-SENTENCE: A logical expression that evaluates to TRUE or FALSE.

An object variable is of the form, object-name[.slot-name]*, which refers to either the object

named or the object which is the value of the named slot (or, if there are more than one slot-names

speci®ed, the object which is the value of the named slot of the object which is the value of the next

named slot, and so on.) Appendix I describes PIF's syntax, including the syntax of the primitive

literals as well as the composite value types.

4 Rationales

The goal of PIF is to support maximal sharing of process descriptions across heterogeneous process

representations. To better serve this goal, PIF consists of not a monolithic set of constructs, but a

partially ordered set of modules. A module can build on other modules in that the constructs in a

Figure 2 Relationships among PIF classes

j . l e e e t a l . 96

module are specializations of the constructs in the other modules. One can adopt some modules but

not others, depending on one's expressive needs. Hence, a module typically contains a set of

constructs that are useful for a particular domain or a type of task. More details of this module

structure are discussed in section 6.

The PIF-CORE, on the other hand, consists of the minimal set of constructs necessary to

translate simple but non-trivial process descriptions. There is the usual trade-o� between simplicity

and expressiveness. The PIF-CORE could have been chosen to contain only the constructs

necessary for describing the simplest process descriptions such as a precedence network. Such a

PIF-CORE then would not be able to translate many process descriptions. On the other hand, the

PIF-CORE could have contained constructs su�cient for expressing the information contained in

process descriptions of richer complexity. Such a PIF-CORE then would contain many constructs

that may not be needed for many simpler descriptions. The PIF-CORE strikes a balance in this

tradeo� by ®rst collecting process descriptions, starting from the simplest and continuing with more

complex until we have reasonably many of them, and then by looking for a set of constructs that can

translate the process descriptions in this collection. The following describes the rationales for each

of the constructs in the PIF-CORE. The attributes of each of these constructs are described in

section 5. Appendix II provides the complete speci®cation of the PIF-CORE 1.2.

In PIF, everything is an ENTITY; that is, every PIF construct is a specialization of ENTITY.

There are four types of ENTITY: ACTIVITY, OBJECT, TIMEPOINT, and RELATION. These

four types are derived from the de®nition of process in PIF: a process is a set of ACTIVITIES that

stand in certain RELATIONS to one another and to OBJECTS over TIMEPOINTS.

The following provides intuitive rationales for each of these four constructs. Their precise

semantics, however, are de®ned by the relations they have with other constructs (cf. section 5).

ACTIVITY represents anything that happens over time. DECISION, which represent condi-

tional activities, is the only special type of ACTIVITY that the PIF-CORE recognizes. In particular,

the PIF-CORE does not make any distinction among process, procedure, or event. A TIMEPOINT

represents a particular point in time, for example ``Oct. 2, 2.32 p.m. 1995'' or ``the time at which the

notice is received.'' An OBJECT is intended to represent all the types of entities involved in a process

description beyond the other three primitive ones of ACTIVITY, TIMEPOINT and RELATION.

AGENT is a special type of OBJECT.

RELATION represents relations among the other constructs. The PIF-CORE o�ers the

following relations: BEFORE, SUCCESSOR, CREATES, USES, MODIFIES and PERFORMS.

BEFORE represents a temporal relation between TIMEPOINTS. SUCCESSOR (Activity-1,

Activity-2) is de®ned to be the relation between ACTIVITIES where BEFORE (Activity-1.End,

Activity-2.Begin) holds. It is provided as a shorthand for simple activity precedence relations.

CREATES, USES and MODIFIES represent relations between ACTIVITY and OBJECT. In

these relations, the object is assumed to be created, used, modi®ed at some non-determinate

timepoint(s) in the duration of the activity (i.e. between its Begin and its End timepoint inclusively).

Hence, the object would have been created, used or modi®ed by the End timepoint, but no

commitment is made as to when the object is actually created, used or modi®ed. PERFORMS

represents a relation between OBJECT (normally an AGENT specialization) and ACTIVITY. In

the PERFORMS relation, the actor is assumed to perform the activity at some non-determinant

timepoint(s) in the duration of the activity (possibly for the whole duration, but not necessarily). We

understand that there are other possible interpretations of these relations. For example, we might

want to specify that a given actor is the only one who performs the activity during the whole activity

interval. Such a speci®cation, however, will require a PSV extension of the PIF-CORE (for example,

by introducing a relation such as PERFORMS-EXCLUSIVELY; cf. section 6).

SUCCESSOR in PIF may not correspond exactly to the notions of successor as used in some

work¯ow or enactment systems because it is common in these systems to bundle into a single

relationship a mixture of temporal, causal and decomposition relationships among activities. PIF

provides precise, separate relationships for all three of these activities-to-activity speci®cations. For

example, the temporal relationship is speci®ed with the BEFORE relation, the causal relation with

The PIF and framework 97

the Precondition and Postcondition attributes of ACTIVITY, and the decomposition relation with

the Component attribute. Its intention is to allow the exact meaning to be communicated. Hence,

one might have to combine some of these constructs to capture exactly the meaning of

SUCCESSOR as used in one's own system.

The attribute value of a PIF-CORE object holds independent of time (i.e. no temporal scope is

associated with an attribute value in the PIF-CORE). Any property of an object which can change

over time, should be represented by a RELATION that links the property to a timepoint. An

example of one such RELATION in the PIF-CORE is ACTIVITY-STATUS which is used to

represent the status (e.g. DELAYED, PENDING) of an ACTIVITY at di�erent times. The

ACTIVITY-STATUS is provided in the PIF-CORE because it is the one example of a dynamic

property of those objects commonly used in process modeling and work¯ow systems and modelled

in the PIF-CORE. Other properties of those objects included in the PIF-CORE are, for the most

part, true for all time. As mentioned before, it is possible to extend the PIF-CORE to express

additional temporally scoped properties by introducing additional RELATIONS. It is also possible

to add temporally scoped version of the static attributes already in the PIF-CORE. In this case, any

such static attributes actually speci®ed in a PIF ®le holds true for all time.

The attribute value of a PIF object can be one of the PIF value types speci®ed above. The PIF

primitive value types consist of NUMBER, STRING and SYMBOL. The PIF composite value

types are LIST and PIF-SENTENCE. LIST is used for conveying structured information that is not

to be evaluated by a PIF interpreter, but simply passed along (e.g. as in the User-Attribute attribute

of ENTITY). PIF-SENTENCE is used to specify a condition that is either true or false, as required,

for example, for the Precondition and the Postcondition attributes of ACTIVITY.

PIF-SENTENCE is a logical expression that may include variables, quanti®ers, and the Boolean

operators for expressing conditions or constraints. A PIF-SENTENCE is used in the Constraint slot

of ENTITY, the Precondition and the Postcondition slots of ACTIVITY, and the If slot of

DECISION. A variable in a PIF-SENTENCE takes the following positions in the three dimensions

that de®ne the possible usage.

1 The scope of the variable is the frame. That is, variables of the same name within a frame

de®nition are bound to the same object, whereas they are not necessarily so if they occur in

di�erent frames.

2 A variable is assumed to be bound by an implicit existential quanti®er.

3 The constraints on variables in a frame de®nition are expressed in the Constraints slot of that

frame. These constraints are local to the frame.

These positions are expected to be extended by some PSVModules. Some PSV modules will extend

the scope of a variable beyond a single object. Some will introduce explicit existential and universal

quanti®ers; yet others will allow global constraints to be stated, possibly by providing an object

where such global constraints that hold across all the objects in a PIF ®le (e.g. All purchase order

must be approved by the ®nance supervisor before sent out.).

Notable absence

We have decided not to include ROLE because a role may be de®ned wherever an attribute is

de®ned. For example, the concept of RESOURCE is a role de®ned by the Resource attribute of the

USE relation. Any object, we view, is a resource if it can be USEd by an ACTIVITY. As a

consequence, we have decided not to include ROLE or any construct that represents a role, such as

RESOURCE. ACTOR is not included in PIF because it is another role-concept, one de®ned by the

Actor attribute of the PERFORMS relation. Any object, as long as it can ®ll the Actor attribute, can

be viewed as an ACTOR. Hence, we resolved that explicit introduction of the constructs such as

ACTOR or RESOURCE is redundant and may lead to potential confusions. We should note,

however, that the PIF-CORE provides the construct AGENT, which is not de®ned by a role an

entity plays but by its inherent characteristic, namely its capability (for example, of making

intelligent decisions in various domains).

j . l e e e t a l . 98

5 Alphabetic class reference

ACTIVITY

Parent classes: ENTITY

Attribute Value Type Multiple Values Allowed

Component ACTIVITY Yes

Precondition PIF-SENTENCE No
Postcondition PIF-SENTENCE No
Begin TIMEPOINT No
End TIMEPOINT No

Attribute descriptions

. Component: the subactivities of the activity. For example, if the activity is ``Develop Software'',

its Component may include: ``Design Software'', ``Write Code'', ``Debug Software'', and so on.

The ®eld is inherited from ENTITY, but here it is restricted so that its values must all be

ACTIVITY entities.

. Precondition: the conditions that have to be satis®ed at the Begin timepoint of the activity before

it can get executed. For example, a precondition of the activity ``Run Software'' might state that

the executable code must be available. Such conditions are expressed using PIF-SENTENCES,

as described in Appendix I.

. Postcondition: the conditions that are true at the End timepoint of the activity. For example, a

postcondition of the activity ``Run Software'' might be that a log ®le has been updated. Such

conditions are expressed using PIF-SENTENCES, as described in Appendix I.

. Begin: the TIMEPOINT at which the activity begins.

. End: the TIMEPOINT at which the activity ends.

In the PIF-CORE, the condition in the Precondition is to be true before the Begin timepoint of the

ACTIVITY. Similarly, the condition in the Postcondition is to be true after the End timepoint of the

ACTIVITY. This requirement may be relaxed later in PSV modules (cf. section 6) to allow the

precondition and the postcondition to be stated relative to other time points.

Many preconditions and postconditions can be expressed in PIF without using the Precondition

and Postcondition attributes of ACTIVITY. For example, the USE relation between an activity A

and an object O implies that one of A's preconditions is that R is available. In general, the

Precondition and Postcondition attributes of ACTIVITY should only be used to express conditions

that cannot be expressed any other way in PIF. Doing so will maximize the degree to which a

process description can be shared with others.

ACTIVITY-STATUS

Parent classes: RELATION

Attribute Value Type Multiple Values Allowed

Activity ACTIVITY Yes

Status SYMBOL Yes
When TIMEPOINT No

Attribute descriptions

. Activity: the activity whose status is being speci®ed.

. Status: the status being speci®ed such as DELAYED and PENDING.

. When: the timepoint at which the status of the activity is being speci®ed.

The PIF and framework 99

AGENT

Parent classes: OBJECT -4 ENTITY

Attribute Value Type Multiple Value Allowed

Capability SYMBOL Yes

Component AGENT Yes

Attribute descriptions

. Capability: its possible values are SYMBOLS that represent the kinds of skills the agent is

capable of providing. The symbols are supplied by the source language and simply preserved

across translations by PIF. A PSV Module may introduce a restricted set of symbol values.

An AGENT represents a person, group, or other entity (such as a computer program) that

participates in a process. An AGENT is distinguished from other ENTITIES by what it is capable

of doing or its skills.

BEFORE

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Preceding-Timepoint TIMEPOINT No
Succeeding-Timepoint TIMEPOINT No

Attribute descriptions

. Preceding timepoint: the time point that is before the Succeeding Timepoint

. Succeeding timepoint: the time point that is after the Preceding Timepoint.

BEFORE is a relation between TIMEPOINTS not between ACTIVITIES. A shorthand for a

common example of the BEFORE relation is available via the SUCCESSOR relation.

CREATES

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute descriptions

. Activity: the activity that creates the object. The object is assumed to be created at some non-

determinate timepoint(s) between its Begin and its End timepoint inclusive.

. Object: the object that the activity creates.

DECISION

Parent classes: ACTIVITY -4 ENTITY

Attribute Value Type Multiple Values Allowed

If PIF-SENTENCE No

Then ACTIVITY Yes
Else ACTIVITY Yes

j . l e e e t a l . 100

Attribute descriptions

. If: the condition being tested to decide which successor relations to follow. Such conditions are

expressed using PIF-SENTENCES, as described in Appendix I

. Then: the activity to follow if the condition in the If ®eld holds (that is, if the PIF-SENTENCE in

the If ®eld evaluates TRUE).

. Else: the activity to follow if the condition in the If ®eld does not hold (that is, if the PIF-

SENTENCE in the If ®eld evaluates to FALSE).

A DECISION is a special kind of activity that represents conditional branching. If the PIF Sentence

in its If attribute is TRUE, the activity speci®ed in its Then attribute follows. If not, the activity in its

Else attribute follows. If the Else attribute is empty, it means no activity follows the DECISION

activity in the case where the decision condition is false. If more than one activity in a process is

dependent on a decision, then they may be included in the multiple value ``then'' or ``else'' attributes.

To ease description of a complex sub-process which is dependent on the decision, it is possible to

describe a set of sub-activities (and any ordering or other constraints on them) in a separate process

and to include that process itself within the ``then'' or ``else'' attributes.

ENTITY

Parent classes: None. ENTITY is the root of the PIF class hierarchy.

Attribute Value Type Multiple Values Allowed

Name STRING No
Documentation STRING No
Component ENTITY Yes

Constraint PIF-SENTENCE No
User-Attribute LIST No

Attribute descriptions

. Name: the entity's name.

. Documentation: a description of the entity.

. Component: this attribute is used to specify an homogeneous aggregate of the type itself. For

example, in an AGENT object, this attribute can be used to specify that the agent is in fact a

group of sub-agents. In an ACTIVITY object, this attribute is used to specify its subactivities that

make up the activity. If one needs to specify a group of objects of di�erent types, then one can do

so by going up to an object of their common ancestor type and specify them in the Component

attribute of this object. When interpreted as a relation, this relation holds between the entity and

each value, not between the entity and the set of all the values.

. Constraint: this attribute is used to specify any constraint that should be true of the other

attribute values in the current entity, e.g. constraints on the variables.

. User-attribute: this attribute is used to store additional ad hoc attributes of an entity that are not

part of its class de®nition. For example, a process modelling application might allow users to

specify additional attributes for AGENT entities that are not included in AGENT's PIF

de®nitionÐthe user might want to add an attribute recording the AGENT's age, for example.

Such additional attributes can be stored in the User-Attribute attribute, which all PIF entities

inherit from ENTITY. Another common use is in the Partially Shared Views translation scheme

that we propose for interchanging PIF ®les (see section 6). Each value of User-Attribute is a list

containing an attribute name and its value(s). For example, an OBJECT entity might have (User-

Attribute (Color RED GREEN) (Weight 120))

The PIF and framework 101

MODIFIES

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute descriptions

. Activity: the activity that modi®es the object. The object is assumed to be modi®ed at some non-

determinate timepoint(s) between its Begin and its End timepoint inclusive.

. Object: the object that the activity modi®es.

OBJECT

Parent classes: ENTITY

Attribute descriptions: No attribute.

An OBJECT is an entity that can be used, created, modi®ed or used in other relationships to an

activity. This includes people (represented by the AGENT subclass in PIF), physical materials, time,

and so forth. The PIF Working Group has discussed adding OBJECT attributes such as

Consumable, Sharable, and so forth, but so far no decision has been made on what attributes are

appropriate.

PERFORMS

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Actor OBJECT Yes
Activity ACTIVITY Yes

Attribute descriptions

. Actor: the object that performs the activity.

. Activity: the activity that is performed. The actor is assumed to perform the activity at some non-

determinate timepoint(s) between its Begin and its End timepoint inclusive.

RELATION

Parent classes: ENTITY

Attribute descriptions: no attribute.

RELATION entities have no attributes of their own. PIF uses it as an abstract parent class for more

speci®c relation classes such as USES and PERFORMS.

SUCCESSOR

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Preceding-Activity ACTIVITY No
Succeeding-Activity ACTIVITY Yes

Attribute descriptions

. Preceding-Activity: the preceding activity.

. Succeeding-Activity: the succeeding activity.

j . l e e e t a l . 102

SUCCESSOR with the Preceding-Activity ACTIVITY-1 and the Succeeding-Activity ACTIVITY-

2 is exactly the same as BEFORE with Preceding-Timepoint TP-1 and Succeeding-Timepoint TP-2,

where TP-1 is the Begin timepoint of ACTIVITY-2 and TP-2 is the End timepoint of ACTIVITY-1.

That is, the SUCCESSOR relation is true if the ACTIVITY-1 ends before the ACTIVITY-2 begins.

TIMEPOINT

Parent classes: ENTITY

Attribute descriptions: No attribute.

TIMEPOINT represents a point in time. In PIF-CORE, it is used, for example, to specify the Begin

and End times of an Activity or the Preceding and Succeeding time points of the BEFORE relation.

USES

Parent classes: RELATION -4 ENTITY

Attribute Value Type Multiple Values Allowed

Activity ACTIVITY No

Object OBJECT Yes

Attribute descriptions

. Activity: the activity that uses the object from its Begin timepoint to its End timepoint. The USES

relation is true from the Begin to the End timepoint of the activity. The object is assumed to be

used at some non-determinate timepoint(s) between its Begin and its End timepoint inclusive.

. Object: the object that the activity uses.

6 Extending PIF

PIF provides a common language through which di�erent process representations can be translated.

Because there will always be representational needs local to individual groups, however, there must

also be a way to allow local extensions to the description classes while supporting as much sharing as

possible among local extensions. The Partially Shared Views (PSV) scheme has been developed for

the purpose (Lee & Malone, 1990). PSV integrates di�erent ways of translating between groups

using di�erent class hierarchies (e.g. pairwise mapping, translation via external common language,

translation via internal common language) so as to exploit the bene®ts of each when most

appropriate.

A PSVModule is a declaration of PIF entities which specialize other entities in the PIF-CORE or

other PSV modules on which it builds. The class de®nitions in a PSV Module cannot delete or alter

the existing de®nitions but can only add to them. Examples of PSV Modules are given at the end of

this section. A group of users may adopt one or more PSV Modules as necessary for its task.

A group using a PSV module translates a PIF object X into their native format as follows:

1. If X's class (call it C) is known to the group and the group has developed a method that translates

objects of class C into their native format, then apply that translation method. C is known to the

group if either C is de®ned in one of the PSV Modules that the group has adopted or the group

has set up beforehand a translation rule between C and a type de®ned in one of the PSVModules

adopted.

2. Otherwise, translate X as if it were an object of the nearest parent class of C for which (1) applies

(its parent class in the most speci®c PSVModule that the group and the sender group both share,

i.e. have adopted).

This translation scheme allows groups to share information to some degree even if they do not

support identical class hierarchies. For examples, suppose that Group A supports only the standard

PIF AGENT class, and that Group B in addition supports an EMPLOYEE subclass. When Group

The PIF and framework 103

A receives a process description in Group B's variation on PIF, they can still translate any

EMPLOYEE objects in the description as if they were AGENT objects. What happens to any

information that is in an EMPLOYEE object that is not in a generic AGENT object? That will vary

according to the sophistication of the translator and the expressive power of the target process

representation. However, the translator will preserve the additional information so that it can be

viewed by users and reproduced if it is later translated back into PIF.

For example, suppose EMPLOYEE has a ``Medical-plan'' attribute, which is not part of the

AGENT object in the PIF-CORE. Then Group A's translator would

. Translate any Medical-plan attributes into a form that the user could view in the target system

(even if it only as a textual comment)3 AND

. When the information is re-translated into PIF in the future (from Group A's native format), it is

emitted as an EMPLOYEE object with the same value for the Medical-plan attribute (and not

simply as an AGENT object with no Medical-plan attribute). MIT researchers are currently

investigating this general problem of preserving as much information as possible through ``round

trips'' from one representation to another and back (Chan, 1995).

Translators that can follow these conventions will minimize information loss when processes are

translated back and forth between di�erent tools. The details of PSV can be found in Lee &Malone

(1990). In the current version of PIF, each PIF ®le begins with a declaration of the class hierarchy

for the objects described in the ®le. PSV uses this class hierarchy to translate objects of types that are

unknown to a translator. To eliminate the need for PIF translators to do any other inheritance

operations, however, all PIF objects should contain all of their attributes and values. For instance,

even if the value of a given attribute is inherited without change from a parent, the attribute and

value are repeated in the child.

As the number of PSV modules grows large, we need a mechanism for registering and

coordinating them so as to prevent any potential con¯ict such as naming con¯ict. Although the

exact mechanism is yet to be worked out, we are envisioning a scenario like the following. The user

who needs to use PIF would ®rst consult the indexed library of PSV modules, which documents

brie¯y the contents of each of the modules and the information about the other modules it

presupposes. If an existing set of modules does not serve the user's purpose in hand and a new PSV

module has to be created, then the information about the new module and its relation to other

modules is sent to a PSV registration server, which then assigns to it a globally unique identi®er and

updates the indexed library. We foresee many other issues to arise such as whether any proposed

PSV module should be accepted, if not who decides, whether to distinguish an ad hoc module

designed for temporary quick translation between two local parties from a well-designed module

intended for global use, and so on. However, rather than addressing these issues in this document,

we will address them in a separate document as we gain more experience with PSV modules.

To date, two PSVModules have been speci®ed: Temporal-Relation-1 and IDEF-0 Modules. The

Temporal-Relation-1 Module is speci®ed in Appendix III. It extends the core PIF by adding all

possible temporal relations that can hold between two activities (cf. Figure 3). The IDEF-0 Module

adds the constructs necessary for translating between IDEF-0 descriptions and PIF. IDEF-0 is a

functional decomposition model, which however has been historically used widely as a process

model description language. IDEF-0 has been used in various ways with no single well-de®ned

semantics. Hence, the IDEF-0 PSV Module supports translation between PIF and one particular

version of IDEF-0. It introduces two additional relations, USES-AS-RESOURCE and USES-AS-

CONTROL, as specializations of the USES relation. They are meant to capture the Control and

Mechanism input of IDEF-0. The Input and Output relations of IDEF-0 may be translated into PIF

by using the Precondition and Postcondition attribute of ACTIVITY. The IDEF-0 Module is

speci®ed in Appendix IV. The mapping between IDEF and PIF is shown in Figure 4. These modules

3If the target representation happens to be PIF (albeit Group A's variant of it), the uninterpretable attributes

would be stored as text in the User-Attribute attribute, which all PIF entities have.

j . l e e e t a l . 104

have not been o�cially registered. They are presented here only to provide examples of PSV

modules. We are soliciting further inputs before we register them.

7 Future directions

Following the release of PIF version 1.2, PIF developments are expected to follow the following

directions:

. We plan to coordinate further development of PIF with other knowledge sharing projects so as

to produce compatibility, if not convergence, among the meta-models produced. We will

continue working closely with the NIST PSL Group in order to make PSL and PIF compatible.

We also plan to work with the International Work¯ow Management Coalition (http://

www.aiai.ed.ac.uk/WfMC), whose goal is to produce interoperability among work¯ow

applications. We have been also talking to the people in the Knowledge Sharing Initiatives

(Neches et al., 1991), which has produced KIF (Knowledge Interchange Format) described

earlier, tools and protocols for sharing knowledge bases and Web-based ontology libraries

among other things. We plan to intensify these coordination e�orts through more structured and

active forms such as workshops and regular meetings.

. We plan to elaborate on the PIF extension mechanism. We need to discuss and work out the

Figure 3 Possible temporal relations between two activities

Figure 4 Mapping between IDEF-0 and PIF constructs

The PIF and framework 105

details on such issues as Who can propose and accept PSVmodules in which domain and how the

modules should be named, registered, organized, and accessed. We also need to carefully lay out

the space of PSV modules by identifying an initial set of generally useful ones extending the PIF-

CORE. Again, this work will require close interactions with the other knowledge sharing groups

as well as the experts in various domains. We hope to pursue this objective as a part of pursuing

the ®rst objective of coordination with other groups.

. To use PIF to share process descriptions automatically, we need a PIF-translator for each of the

local process representations involved. For example, each of the groups represented in the PIF

Working Group built a translator for translating between PIF 1.0 and its own representation.

Building PIF-translators are ultimately the responsibility of individual groups who want to use

PIF. However, we would like to provide a toolkit that will help future groups build PIF-

translators.

Appendix A PIF syntax

The syntax of PIF adopts that of KIF (Knowledge Interchange FormatÐsee Genesereth and Fikes,

1992). KIF is a language that has been developed by the Interlingua Working Group, under the

DARPA (Defense Advanced Research Projects Agency) Knowledge Sharing Initiative (Neches et

al., 1991) to facilitate knowledge sharing. Its features include: formally de®ned declarative

semantics, expressive power to represent knowledge required for a typical application knowledge

base, and a structure that enables semi-automatic translation into and out of typical representation

languages. PIF also adopts the frame syntax, which is an extension of the KIF syntax for

representing object-based knowledge. Figure 5 shows the BNF for the frame syntax.

There are several reasons why PIF adopts KIF syntax:

. There is little overhead involved in using KIF for our current purpose. Any interchange format

we choose should provide a structured way of specifying classes, instances, values, and value

restrictions. KIF has a relatively simple and well-developed syntax for all of these. Currently, we

make little use of KIF beyond its syntax. For example, we do not currently use any of KIF's

extensive provisions for describing the formal semantics of a set of object classes.

. KIF is already a proposed interchange format and much e�ort has gone into making it a good

general-purpose interchange format. In particular, KIF has a well-de®ned formal semantics,

which helps reduce the ambiguity that might arise in translating between PIF and other process

description formats.

(de®ne-frame5frame-name4
:own-slots ((5own-slot-spec4)*)

:template-slots ((5template-slot-spec4)*)

)

5own-slot-spec4 :== (5slot-name45value-spec4+)

5template-slot-spec4 :== (5slot-name45facet-or-value-spec4+)

5value-spec4 :==5PIF-Value4

5PIF-Value4 :==5number4 |5string4 |5symbol4 |5list4 |5PIF-sentence4
5list4 :== ({ (5string45string4)}+)

5PIF-sentence4 :== cf. Figure 6.

5frame-name4 :== symbol naming a class, relation, function, or object

5slot-name4 :== symbol naming a binary relation or unary function

5facet4 :== symbol naming a slot constraint relation, such as SLOT-VALUE-TYPE

Figure 5 The BNF for the PIF frame syntax (taken and modi®ed from the Ontolingua frame syntax)

j . l e e e t a l . 106

. Using KIF allows us to exploit existing resources. For example, the KIF repository of generic

and domain-speci®c knowledge structures has been growing. These knowledge bases include

formalizations of con®guration design, engineering mathematics, job assignment, and biblio-

graphic information), all of which would be accessible to any PIF translators that were extended

to process the more general KIF structures that are not included in basic PIF.

. There are tools available, such as Ontolingua (Gruber, 1993), that can facilitate encoding

knowledge in KIF and translation to and from other representations. Ontolingua provides

higher-level knowledge-description constructs than standard KIF, as well as translation services

between KIF and other knowledge representations (for example, LOOM, KEE, Epikit).

KIF syntax is based on Lisp (Steele, 1990), but little in KIF requires subscription to the Lisp

philosophy.We could view the KIF syntax simply as a standard way of specifying a structured list of

information. PIF uses a simpli®ed version of the KIF syntax (cf. Appendix A).

A PIF ®le begins with a version number of the PIF being used, followed by a description of the

class hierarchy for objects in the ®le, and then by descriptions of all of the object instances. Figure 5

shows the BNF grammar for PIF expressions. The grammar uses the common conventions that

non-terminals are enclosed in angle brackets, * denotes zero or more repetitions, + denotes one or

more repetitions, optional items are enclosed in square brackets, vertical bars separate alternatives,

place holders for primitive literals are in uppercase (for example, NUMBER), and everything else is

a literal constant. A PIF expression is case-insensitive. Appendix C contains a very simple example

PIF ®le.

:OWN-SLOTSÐslots on the object itself, as opposed to the instances of a class. If the object is a

class, then own slots describe relationships and properties of the class as a whole, such as its

superclasses and documentation. If the object is an instance, then own slots describe properties of

the object, including the relation instance-of.

Own slots are binary relations applied to frames, with the frame inserted as a ®rst argument. For

example:

(de®ne-frame frame-1

:own-slots ((instance-of class-2)))

translates to the KIF sentence

(instance-of frame-1 class-2)

:TEMPLATE-SLOTSÐonly make sense if the frame is an instance of CLASS, because template

slots describe properties of instances of the class. For example, the template slot spec

(slot-2 (SLOT-VALUE-TYPE type-3)) for the frame class-1 translates to the KIF sentence

(slot-value-type class-1 slot-2 type-3)

which is a second-order way of saying

(forall ?c (=4 (and (instance-of ?c class-1)

(de®ned (slot-2 ?c)))

(instance-of (slot-2 ?c) type-3)))

A value of a template slot is a downward inherited value (it is a slot value for all instances of the

class). For frame class-1, the template slot spec

(slot-2 value-3) translates into the KIF sentence

(inherited-slot-value class-1 slot-2 value-3)

The following set of facets are recognized by PIF: SLOT-CARDINALITY SLOT-VALUE-TYPE.

PIF allows two kinds of comments:

. Comments that begin with a semicolon and end at the end of the same line.

. Comments that begin with #| and end with |#. This kind of comment can be nested.

So, for example, #| ...#| ... |# ... |# is a valid comment.

The PIF and framework 107

The primitive literal types in the grammar are NUMBER, STRING, SYMBOL and PIF-

SENTENCE. NUMBER, STRING and SYMBOL are de®ned very much like the corresponding

concepts in the Common Lisp programming language (Steele, 1990).

An object variable is of the form, OBJECT[.SLOT*]. If there is no slot speci®ed, i.e. OBJECT,

then it refers to the object by that name. If there is a single slot speci®ed, i.e. OBJECT.SLOT, then it

denotes the slot value of the object. If there are two slots speci®ed, i.e. OBJECT.SLOT-1.SLOT-2,

then it denotes the slot value of an object which is the slot value of the object if there are two slots

speci®ed. And so on with multiple slots speci®ed. If the object is SELF, it refers to the object within

which the object variable is used.

A PIF-SENTENCE is a logical expression for representing di�erent constraints for PIF objects

and relations. Within the PIF-CORE, a PIF-SENTENCE is used in the following ways:

. Constraint slot of ENTITY.

. Precondition and Postcondition slots of ACTIVITY.

. If slot of a DECISION activity.

For the PIF-CORE, this class is restricted to sentences composed of terms with variables and logical

connectives. Syntactically, a PIF-SENTENCE is a restricted class of KIF sentences. Figure 6 shows

the BNF speci®cation of PIF-SENTENCE.

The PIF-CORE makes a speci®c assumption about the quanti®ers and the scope of variables in a

PIF-SENTENCE. This assumption is characterized below along three dimensions in the treatment

of variables. Each of these dimensions can be considered to be a set of design choices that are

adopted within The PIF-CORE or some PSV module. The class of KIF sentences corresponding to

PIF-SENTENCE within a given PSV module is de®ned by the particular design choices adopted

within the module.

1. All variables within a PIF-SENTENCE must be quanti®ed either universally (in which case the

sentence must be satis®ed for all values of the variable) or existentially (in which case, the

sentence must be satis®ed for some value of the variable). The issue to be addressed in the

syntactic speci®cation of PIF-SENTENCE is whether or not to explicitly include quanti®ers,

since many process ontologies do not include explicit quanti®ers. In addition, the presence of

5pif-sentence4 ::=5relsent4 |

5logsent4
5relsent4 ::= (5relconst45term4*) |

(5funconst45term4*5term4)

5logsent4 ::= (not5sentence4) |

(and5sentence4*) |

(or5sentence4*) |

(=45sentence4*5sentence4) |

(5=45sentence45sentence4)

5term4 ::=5indvar4 |5constant4
5indvar4 ::= ?5objconst4 |5objconst4[.5slotconst4]*

5objconst4 ::= SYMBOL

5slotconst4::= SYMBOL

5funconst4 ::= ; There is no function constant in the PIF-CORE but extensions of the PIF-

CORE are expected to introduce their own constants.

5relconst4 ::= + | ± | = |54 |4 |5 |5= |5= ; These eight symbols exhaust the relation

constants in the PIF-CORE but extensions of the PIF-CORE are expected to introduce their own

constants.

5constant4 ::=5objconst4 |5slotconst4 |5funconst4 |5relconst4

Figure 6 BNF speci®cation of PIF-SENTENCE

j . l e e e t a l . 108

quanti®ers within an expression would require more sophisticated translators for parsing

arbitrary KIF sentences.

Within the PIF-CORE, we adopt conventions for the use of quanti®ers in a PIF-SENTENCE.

Variables that appear in the Precondition and Postcondition slots of ACTIVITY or in the If slot

of a DECISION activity are assumed to be implicitly existentially quanti®ed. Variables that

appear in the Constraints slot of an ENTITY are assumed to be implicitly universally quanti®ed.

Additional PSV modules can allow for explicit quanti®cation and richer expressiveness.

2. The second dimension de®nes the scope of the variable within the PIF-SENTENCE. For

example, three options along this dimension are:

(i) the scope of a variable is restricted to the object in whose slot it appears;

(ii) the scope of the variable is (syntactically) speci®ed;

(iii) the scope of the variable is global over the set of objects in a PIF ®le.

Within the PIF-CORE, we assume that the scope of a variable is the object, that is, that the

variables of the same name within a frame de®nition are bound to the same values, whereas

variables of the same name may be bound to di�erent values if they appear in di�erent frames.

3. The third dimension de®nes how variables are allowed to be used:

(i) variables only refer to slot values;

(ii) variables can refer to arbitrary objects in the PIF ®le; examples of this is a constraint such as

``All agents must clean their work area after completing their activities,'' and ``All purchase

orders must be approved by the ®nance supervisor before being sent out.''

Within the PIF-CORE, a PIF-SENTENCE is a constraint that is local to the frame de®nition in

which it appears.

The de®ne-hierarchy construct that appears at the beginning of every PIF ®le is used by the

Partially Shared Views (PSV) translation scheme described in section 6. The PSV scheme must be

able to determine the parent classes of any classes that a given translator does not know how to

translate. A de®ne-hierarchy construct has the form (de®ne-hierarchy LIST) where LIST is a

nested list of class ids. The ®rst id in the list is the id of the root class (ENTITY, in PIF). The

remaining elements are sub-hierarchy de®nitions, in the same form. So, for example,

(de®ne-hierarchy

(A

B

(C

D

(E))

(F

G)))

de®nes the class tree shown in Figure 7.

Figure 7 A leaf class can be denoted either by a symbol or by a list with no subhierarchy de®nitions (for
example, E)

The PIF and framework 109

Appendix B PIF-CORE speci®cation

(define-frame ENTITY

:own-slots

((Name ``ENTITY'')

(Documentation ``The PIF Root Class''))

:template-slots

((Component (slot-value-type ENTITY) (slot-cardinality MULTIPLE))

(Constraint.(slot-value-type PIF-SENTENCE))

(User-Attributes (slot-value-type LIST) (slot-cardinality MULTIPLE)))

)

(define-frame ACTIVITY

:own-slots

((Name ``ACTIVITY'')

(Subclass-Of ENTITY)

(Documentation ``ACTIVITY represents anything that happens over time. The PIF-CORE

makes no distinction among process, procedure, or event.''))

:template-slots

((Component (slot-value-type ACTIVITY (slot-cardinality MULTIPLE))

(Begin (slot-value-type TIMEPOINT))

(End (slot-value-type TIMEPOINT))

(Precondition (slot-value-type PIF-SENTENCE))

(Postcondition (slot-value-type PIF-SENTENCE)))

(define-frame TIMEPOINT

:own-slots

((Name ``TIMEPOINT'')

(Subclass-Of ENTITY)

(Documentation ``TIMEPOINT represents a particular point in time, for example ``Oct.

2, 2.32 p.m. 1995'' or ``the time at which the notice is received.''))

:template-slots

((Component (slot-value-type TIMEPOINT) (slot-cardinality MULTIPLE)))

)

(define-frame OBJECT

:own-slots

((Name ``OBJECT'')

(Subclass-Of ENTITY)

(Documentation ``An OBJECT is intended to represent all the types of entities involved

in a process description beyond the other three primitive ones of ACTIVITY, TIMEPOINT,

and RELATION.''))

:template-slots

((Component (slot-value-type OBJECT) (slot-cardinality MULTIPLE)))

)

(define-frame RELATION

:own-slots

((Name ``RELATION'')

(Subclass-Of ENTITY)

(Documentation ``RELATION represents relations among the other constructs.''))

:template-slots

((Component (slot-value-type RELATION) (slot-cardinality MULTIPLE)))

)

(define-frame DECISION

:own-slots

((Name ``DECISION'')

(Subclass-Of ACTIVITY)

(Documentation ``DECISION, which represent conditional activities, is the only special

type of ACTIVITY that the PIF-CORE recognizes.''))

:template-slots

((Component (slot-value-type DECISION) (slot-cardinality MULTIPLE))

(If (slot-value-type PIF-SENTENCE))

(Then (slot-value-type ACTIVITY) (slot-cardinality MULTIPLE))

j . l e e e t a l . 110

(Else (slot-value-type ACTIVITY) (slot-cardinality MULTIPLE)))

)

(define-frame AGENT

:own-slots

((Name ``AGENT'')

(Subclass-Of OBJECT)

(Documentation ``AGENT is a special type of OBJECT which has some capability such as

of making decisions.''))

:template-slots

((Component (slot-value-type AGENT) (slot-cardinality MULTIPLE))

(Capability (slot-value-type ENTITY) (slot-cardinality MULTIPLE)))

)

(define-frame CREATES

:own-slots

((Name ``CREATES'')

(Subclass-Of RELATION)

(Documentation ``creation relation between an activity and an object.''))

:template-slots

((Component (slot-value-type CREATES) (slot-cardinality MULTIPLE))

(Activity (slot-value-type ACTIVITY))

(Object (slot-value-type OBJECT) (slot-cardinality MULTIPLE)))

)

(define-frame MODIFIES

:own-slots

((Name ``MODIFIES'')

(Subclass-Of RELATION)

(Documentation ``modification relation between an activity and an object.''))

:template-slots

((Component (slot-value-type MODIFIES) (slot-cardinality MULTIPLE))

(Activity (slot-value-type ACTIVITY)

(Object (slot-value-type OBJECT) (slot-cardinality MULTIPLE)))

)

(define-frame USES

:own-slots

((Name ``USES'')

(Subclass-Of RELATION)

(Documentation ``use relation between an activity and an object.''))

:template-slots

((Component (slot-value-type USES) (slot-cardinality MULTIPLE))

(Activity (slot-value-type ACTIVITY)

(Object (slot-value-type OBJECT) (slot-cardinality MULTIPLE)))

)

(define-frame PERFORMS

:own-slots

((Name ``PERFORMS'')

(Subclass-Of RELATION)

(Documentation ``perform relation between an actor and an object.''))

:template-slots

((Component (slot-value-type PERFORMS) (slot-cardinality MULTIPLE))

(Actor (slot-value-type OBJECT))

(Activity (slot-value-type ACTIVITY)))

)

(define-frame BEFORE

:own-slots

((Name ``BEFORE'')

(Subclass-Of RELATION)

(Documentation ``Precedence relation between two timepoints''))

:template-slots

((Component (slot-value-type BEFORE) (slot-cardinality MULTIPLE))

The PIF and framework 111

(Preceding-Timepoint (slot-value-type TIMEPOINT))

(Succeeding-Timepoint (slot-value-type TIMEPOINT)))

)

(define-frame SUCCESSOR

:own-slots

((Name ``SUCCESSOR'')

(Subclass-Of RELATION)

(Documentation ``Precedence relation between two activities, i.e. the End timepoint of

the Preceding Activity comes before the Begin timepoint of the Succeeding

Activity.''))

:template-slots

((Component (slot-value-type SUCCESSOR) (slot-cardinality MULTIPLE))

(Preceding-Activity (slot-value-type ACTIVITY))

(Succeeding-Activity (slot-value-type ACTIVITY)))

)

(define-frame ACTIVITY-STATUS

:own-slots

((Name ``ACTIVITY-STATUS'')

(Subclass-Of RELATION)

(Documentation ``ACTIVITY-STATUS is a RELATION which specifies the status of a process

at a timepoint.''))

:template-slots

((Activity (slot-value-type ACTIVITY))

(Status (slot-value-type ENTITY) (slot-cardinality MULTIPLE)

(When (slot-value-type TIMEPOINT))

)

Appendix C The Temporal-Relations-1 PSV module

Name: Temporal-Relations-1 PSV Module

Version: 0.1

Uses: (PIF-CORE, 1.2)

;; The Name of the Module together with its Version number currently provides a unique

identifier.

(define-frame MEETS

:own-slots

((subclass-of RELATION)

(Documentation ``The Succeeding Activity begins at the moment when the Preceding

Activity ends.''))

:template-slots

((Preceding-Activity ?act-1)

(Succeeding-Activity ?act-2)

(Constraint (= ?act-1.End ?act-2.Begin)))

)

(define-frame OVERLAPS

:own-slots

((subclass-of RELATION)

(Documentation ``The Succeeding Activity begins at the moment before the Preceding

Activity ends.''))

:template-slots

((Preceding-Activity ?act-1)

(Succeeding-Activity ?act-2)

(Constraint (5 ?act-2.Begin ?act-1.End)))

)

(define-frame COINCIDES

:own-slots

((subclass-of RELATION)

j . l e e e t a l . 112

(Documentation ``The two activities begin and end at the same moments.''))

:template-slots

((Activity-1 ?act-1)

(Activity-2 ?act-2)

(Constraint (AND (= ?act-1.Begin ?act-2.Begin) (= ?act-1.End ?act-2.End))))

)

(define-frame CONTAINED

:own-slots

((subclass-of RELATION)

(Documentation ``Contained Activity begins after the Containing Activity begins and

ends before the Containing Activity ends.''))

:template-slots

((Contained-Activity ?act-1)

(Containing-Activity ?act-2)

(Constraint (AND (5 ?act-2.Begin ?act-1.Begin) (5 ?act-1.End ?act-2.End))))

)

(define-frame CO-BEGINS

:own-slots

((subclass-of RELATION)

(Documentation ``The two activities begin together.''))

:template-slots

((Activity-1 ?act-1)

(Activity-2 ?act-2)

(Constraint (= ?act-1.Begin ?act-2.Begin))

)

(define-frame CO-ENDS

:own-slots

((subclass-of RELATION)

(Documentation ``The two activities end together.''))

:template-slots

((Activity-1 ?act-1)

(Activity-2 ?act-2)

(Constraint (= ?act-1.End ?act-2.End))

)

Appendix D The IDEF-0 PSV module

Name: IDEF-0

Version: 0.1

Uses: (PIF-CORE, 1.2)

(define-frame USES-AS-RESOURCE

:own-slots

((Subclass-Of USES)

(Documentation ``The relation that should capture the Mechanism Input arrow of the

IDEF-0 diagram.''))

:template-slots

((Activity (slot-value-type ACTIVITY)) ; inherited from USES

(Object (slot-value-type OBJECT))) ; inherited from USES

)

(define-frame USES-AS-CONTROL

:own-slots

((Subclass-Of USES)

(Documentation ``The relation that should capture the Control Input arrow of the IDEF-

0 diagram.''))

:template-slots

((Activity (slot-value-type ACTIVITY)) ; inherited from USES

(Object (slot-value-type OBJECT))) ; inherited from USES

)

The PIF and framework 113

Appendix E An example PIF ®le

This appendix gives an example PIF ®le for a very over-simpli®ed design process. This example

design project is composed of ®ve activities and a design team with four designers. The precedence

network of the activities and the task responsibilities of the AGENTs are illustrated in Figure 8.

(version 1.2)

(define-hierarchy

(entity

(activity

decision)

(TIMEPOINT)

(object)

(agent)

(relation

before

creates

uses

modifies

performs

successor)))

;;;

;; Project and Team definitions

;;;

(define-frame EXAMPLE-PROJECT

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``A project is the top-level activity of

this activity elaboration hierarchy. The

Component attribute lists the sub-activities of

the project.'')

(Name ``The Example Project Process'')

(Component ARCHITECTURE-DESIGN-1 ELECTRICAL-DESIGN-2

MECHANICAL-DESIGN-3 DESIGN-REVIEW-4)

))

(define-frame DESIGN-TEAM-1

:own-slots

Figure 8 Precedence network of activities and AGENT responsibilities

j . l e e e t a l . 114

((Instance-Of AGENT)

(Documentation ``A project team is composed of AGENTS, which as a whole can be viewed

as an AGENT itself.'')

(Name ``Project Design Team'')

(Component ARCHITECT-1 ELECTRICAL-ENGINEER-2

MECHANICAL-ENGINEER-3 PROJECT-MANAGER-4)

))

(define-frame TEAM-PERFORMS-PROJECT

:own-slots

((Instance-Of PERFORMS)

(Actor DESIGN-TEAM-1)

(Activity EXAMPLE-PROJECT)

))

;;;

;; Architectural Design and Architect-1

;;;

(define-frame ARCHITECTURE-DESIGN-1

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``This is the first activity of the

example project. It starts when a contract is made.

It produces an architectural design which will be

followed by electrical and mechanical design.'')

(Name ``Architecture Design'')

(End ARCHITECTURE-DESIGN-1-END-TIMEPOINT)

))

(define-frame ARCHITECTURE-DESIGN-1-END-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The end TIMEPOINT of the ARCHITECTURE-DESIGN-1 activity, among other

things)

(Name ``End Timepoint for Architecture Design'')

))

(define-frame ARCHITECT-1

:own-slots

((Instance-Of AGENT)

(Name ``Robert Callahan'')

(Capability ARCHITECTURE-SKILL)

))

(define-frame PERFORMS-1

:own-slots

((Instance-Of PERFORMS)

(Actor ARCHITECT-1)

(Activity ARCHITECTURE-DESIGN-1)

))

;;;

;; Electrical Design and Electrical-Engineer-2

;;;

(define-frame ELECTRICAL-DESIGN-2

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``This is the second activity of the project. This activity can begin

only after ARCHITECTURE-DESIGN-1 is completed. It can (but does not necessarily) occur

in parallel with MECHANICAL-DESIGN-3.'')

(Name ``Electrical Design'')

(Begin ELECTRICAL-DESIGN-2-BEGIN-TIMEPOINT)

(End ELECTRICAL-DESIGN-2-END-TIMEPOINT)

))

The PIF and framework 115

(define-frame ELECTRICAL-DESIGN-2-BEGIN-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The begin TIMEPOINT of the ELECTRICAL-DESIGN-2 activity, among other

things)

(Name ``Begin Timepoint for ELECTRICAL-DESIGN-2'')

))

(define-frame ELECTRICAL-DESIGN-2-END-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The end timepoint of the ELECTRICAL-DESIGN-2 activity, among other

things)

(Name ``End Timepoint for ELECTRICAL-DESIGN-2'')

))

(define-frame ARCH-BEFORE-ELECTRIC

:own-slots

((Instance-Of BEFORE)

(Preceding-Timepoint ARCHITECTURE-DESIGN-1-END-TIMEPOINT)

(Succeeding-Timepoint ELECTRICAL-DESIGN-2-BEGIN-TIMEPOINT)

))

(define-frame ELECTRICAL-ENGINEER-2

:own-slots

((Instance-Of AGENT)

(Documentation ``This engineer has two skills, one is electrical and the other is

mechanical. She is responsible for both electrical design and design review.'')

(Name ``Cristina Marconi'')

(Capability ELECTRICAL-SKILL MECHANICAL-SKILL)

))

(define-frame PERFORMS-2

:own-slots

((Instance-Of PERFORMS)

(Actor ELECTRICAL-ENGINEER-2)

(Activity ELECTRICAL-DESIGN-2)

))

;;;

;; Mechanical Design Mechanical-Engineer-3

;;;

(define-frame IF-ARCHITECTURE-DESIGN-1-DELAYED

:own-slots

((Instance-Of DECISION)

(Documentation ``The activity that decides what to do after checking if ARCHITECTURE-

DESIGN-1 is delayed or not.'')

(Begin IF-ARCHITECTURE-DESIGN-DELAYED-BEGIN-TIMEPOINT)

(If ARCHITECTURE-DESIGN-1-DELAYED)

(Then MECHANICAL-DESIGN-4)

(Else MECHANICAL-DESIGN-3))

)

(define-frame ARCHITECTURE-DESIGN-1-DELAYED

:own-slots

((Instance-Of ACTIVITY-STATUS)

(Documentation ``The ARCHITECTURE-DESIGN-1 is delayed at the beginning of the DECISION

activity, IF-ARCHITECTURE-DESIGN-DELAYED)

(Activity ARCHITECTURE-DESIGN-1)

(Status DELAYED)

(When IF-ARCHITECTURE-DESIGN-DELAYED-BEGIN-TIMEPOINT))

)

(define-frame IF-ARCHITECTURE-DESIGN-DELAYED-BEGIN-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

j . l e e e t a l . 116

(Documentation ``The begin timepoint of the IF-ARCHITECTURE-DESIGN-DELAYED activity)

(Name ``Begin Timepoint for IF-ARCHITECTURE-DESIGN-DELAYED'')

))

(define-frame MECHANICAL-DESIGN-3

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``This activity can begin only if ARCHITECTURE-DESIGN-1 is completed in

time. It can (but not necessarily) occur in parallel with ELECTRICAL-DESIGN-2.'')

(Name ``Mechanical Design'')

(Begin MECHANICAL-DESIGN-3-BEGIN-TIMEPOINT)

(End MECHANICAL-DESIGN-3-END-TIMEPOINT)

))

(define-frame MECHANICAL-DESIGN-3-BEGIN-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The begin timepoint of the MECHANICAL-DESIGN-3 activity, among other

things)

(Name ``Begin Timepoint for Mechanical Design 3'')

))

(define-frame MECHANICAL-DESIGN-3-END-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The End timepoint of the MECHANICAL-DESIGN-3 activity, among other

things)

(Name ``End Timepoint for Mechanical Design 3'')

))

(define-frame MECHANICAL-DESIGN-4

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``This activity can begin only if ARCHITECTURE-DESIGN-1 is delayed. It

can (but not necessarily) occur in parallel with ELECTRICAL-DESIGN-2.'')

(Name `` Mechanical Design 4'')

(Begin MECHANICAL-DESIGN-4-BEGIN-TIMEPOINT)

(End MECHANICAL-DESIGN-4-END-TIMEPOINT)

))

(define-frame MECHANICAL-DESIGN-4-BEGIN-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The begin TIMEPOINT of the MECHANICAL-DESIGN-4 activity, among other

things)

(Name ``Begin Timepoint for Mechanical Design 4'')

))

(define-frame MECHANICAL-DESIGN-4-END-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The End Timepoint of the MECHANICAL-DESIGN-4 activity, among other

things)

(Name ``End Timepoint for Mechanical Design 4'')

))

(define-frame ARCHITECTURE-DESIGN-1-BEFORE-MECHANICAL-DESIGN-3

:own-slots

((Instance-Of BEFORE)

(Preceding-Timepoint ARCHITECTURE-DESIGN-1-END-TIMEPOINT)

(Succeeding-Timepoint MECHANICAL-DESIGN-3-BEGIN-TIMEPOINT)

))

(define-frame ARCHITECTURE-DESIGN-1-BEFORE-MECHANICAL-DESIGN-4

:own-slots

((Instance-Of BEFORE)

The PIF and framework 117

(Preceding-Timepoint ARCHITECTURE-DESIGN-1-END-TIMEPOINT)

(Succeeding-Timepoint MECHANICAL-DESIGN-4-BEGIN-TIMEPOINT)

))

(define-frame MECHANICAL-SKILL

:own-slots

((Instance-Of ENTITY)

(Name ``Mechanical Skill)

))

(define-frame SPECIAL-MECHANICAL-SKILL

:own-slots

((Instance-Of ENTITY)

(Name ``Special Mechanical Skill'')

))

(define-frame ELECTRICAL-SKILL

:own-slots

((Instance-Of ENTITY)

(Name ``Electrical Skill'')

))

(define-frame MANAGEMENT-SKILL

:own-slots

((Instance-Of ENTITY)

(Name ``Management Skill'')

))

(define-frame MECHANICAL-ENGINEER-3

:own-slots

((Instance-Of AGENT)

(Name ``Gary Fassbinder'')

(Capability MECHANICAL-SKILL)

))

(define-frame PERFORMS-3

:own-slots

((Instance-Of PERFORMS)

(Actor MECHANICAL-ENGINEER-3)

(Activity MECHANICAL-DESIGN-3)

))

;; Nobody has been assigned yet to the MECHANICAL-DESIGN-4, but whoever does it has to

have the

;; special-mechanical-skill-1.

(define-frame PERFORMS-4

:own-slots

(Instance-Of PERFORMS)

(Activity MECHANICAL-DESIGN-4)

(Constraint (= ?SELF.Actor.Capability SPECIAL-MECHANICAL-SKILL-1)

))

;;;

;; Design Review and Project Manager

;;;

(define-frame DESIGN-REVIEW-5

:own-slots

((Instance-Of ACTIVITY)

(Documentation ``This is the last activity of the project. This activity can begin

only after both ELECTRICAL-DESIGN-2 and MECHANICAL-DESIGN-3 (or MECHANICAL-DESIGN-4)

are completed. It has four responsible AGENTs, and this activity can be viewed as a

design-review meeting. All team members must participate.'')

(Name ``Design Review'')

(Begin DESIGN-REVIEW-5-BEGIN-TIMEPOINT)

))

j . l e e e t a l . 118

(define-frame DESIGN-REVIEW-5-BEGIN-TIMEPOINT

:own-slots

((Instance-Of TIMEPOINT)

(Documentation ``The Begin timepoint of the DESIGN-REVIEW-5 activity, among other

things)

(Name ``Begin Timepoint for Design Review 5'')

))

(define-frame ELECTRICAL-BEFORE-DESIGN-REVIEW

:own-slots

((Instance-Of BEFORE)

(Preceding-Timepoint ELECTRICAL-DESIGN-2-END-TIMEPOINT)

(Succeeding-Timepoint DESIGN-REVIEW-5-BEGIN-TIMEPOINT)

))

(define-frame MECHANICAL-3-BEFORE-DESIGN-REVIEW

:own-slots

((Instance-Of BEFORE)

(Preceding-Timepoint MECHANICAL-DESIGN-3-END-TIMEPOINT)

(Succeeding-Timepoint DESIGN-REVIEW-5-BEGIN-TIMEPOINT)

))

(define-frame MECHANICAL-4-BEFORE-DESIGN-REVIEW

:own-slots

((Instance-Of BEFORE)

(Preceding-Timepoint MECHANICAL-DESIGN-4-END-TIMEPOINT)

(Succeeding-Timepoint DESIGN-REVIEW-5-BEGIN-TIMEPOINT)

))

(define-frame PROJECT-MANAGER-4

:own-slots

((Instance-Of AGENT)

(Documentation ``This AGENT is the manager of this project. She is responsible for

decision-making whenever a exception occurs during the process of the project. She is

also co-responsible for the design-review activity.'')

(Name ``Ann Rollins'')

(Capability MECHANICAL-SKILL ELECTRICAL-SKILL MANAGEMENT-SKILL)

))

(define-frame PERFORMS-5

:own-slots

((Instance-Of PERFORMS)

(Agent DESIGN-TEAM-1)

(Activity DESIGN-REVIEW-5)

))

Appendix F Changes from the PIF 1.0

The following describes the rationales for removing some of the PIF 1.0 constructs from the PIF 1.2

Core. ACTOR has been renamed to AGENT because ACTOR, we believe, is a role (cf. The

discussion of ROLE in section 4), and thus should not be represented by an explicit construct.

AGENT, on the other hand, is an entity type that can be characterized by, for example, decision

making capability.

PREREQUISITE has been removed from PIF 1.0 because it is a mixture of descriptive and

prescriptive speci®cation. Any of the constructs in PIF can be used either descriptively or

prescriptively. When used descriptively, the PIF constructs describe what actually happen. When

used prescriptively, it says what should happen. The BEFORE relation, in particular, can be used

descriptively or prescriptively. It is not clear what PREREQUISITE is other than a prescriptive use

of BEFORE. Actually, BEFORE is a relation between TIMEPOINTS whereas PREREQUISITE is

a relation between ACTIVITIES. Hence, strictly speaking, PREREQUISITE would mean

BEFORE(ACTIVITY-1.End, ACTIVITY-2.BEGIN) in the prescriptive sense.

The PIF and framework 119

SKILL has been removed because SKILL is not useful without agreeing on its subclasses or its

di�erent instances (e.g. MECHANICAL-SKILL, MARKETING-SKILL, etc.). However, the

determination of these subclasses would be meaningful only in the context of a speci®c domain or

task. Hence, we decided that in the PIF-CORE a skill should be represented simply as an ENTITY

in the Capability attribute of AGENT and let PSV Modules introduce its specialization based on

their needs.

RESOURCE (in the proper sense of something used by a given activity) has been removed

because it's something that can and probably should be de®ned dynamically. That is, whether a

given object is a resource cannot be de®ned statically because the same object can be a resource for

one activity but not for another. Instead, the RESOURCE membership of an object should be

de®ned in terms of the relation it satis®es (i.e. USED by an ACTIVITY) and tested dynamically in

the given context.

GROUP has been removed because a group can now be represented by the Component attribute

of ENTITY, which represents a homogeneous collection of its own type. For example, a group of

AGENT can be represented by creating an object of type AGENT and specifying its Component to

be the individual members of the group.

The Status attribute of ACTIVITY is removed. Instead ACTIVITY-STATUS (Activity, Symbol,

Timepoint) is introduced in order to associate with it a timepoint (cf. the discussion of the attribute

value earlier in this section).

References

Chan, FY, 1995. ``The round trip problem: a solution for the process handbook'' Unpublished Master's Thesis,

MIT Department of Electrical Engineering and Computer Science, May.
Genesereth, M and Fikes, R, 1992. ``Knowledge Interchange Format v.3 Reference Manual'' Available

as a postscript ®le via anonymous ftp from www-ksl.stanford.edu:/pub/knowledge-sharing/

papers/kif.ps
Gruber, T, 1993. ``Ontolingua: A translation approach to portable ontology speci®cations'' Knowledge

Acquisition 5(2), 199±200. (Available via anonymous ftp from www-ksl.stanford.edu:/pub/

knowledge-sharing/papers/ongolingua-intro.ps)
Lee, J and Malone, T, 1990. ``Partially shared views: A scheme for communicating between groups using

di�erent type hierarchies'' ACM Transactions on Information Systems 8(1), 1±26.

Malone, T, Crowston, K, Lee, J and Pentland, B, 1993. ``Tools for inventing organizations: toward a handbook
of organizational processes'' Proceedings of the 2nd IEEEWorkshop on Enabling Technologies Infrastructure
for Collaborative IEEE Press.

Neches, R, Fikes, R, Finin, T, Gruber, T, Patil, R, Senator, T and Swartout, WR, 1991. ``Enabling technology

for knowledge sharing'' AI Magazine 12(3), 36±56.
Steele, G, 1990. Common Lisp: The Language. Second edition. Digital Press.
Tate, A, 1995. ``Characterizing plans as a set of constraints ± the 5I-N-OVA4 model ± a framework for

comparative analysis'' ACM SIGART Bulletin, Special Issue on ``Evaluation of Plans, Planners, and
Planning Agents'', 6(1), January. (Available as a postscript ®le via ftp://ftp.aiai.ed.ac.uk/pub/
documents/1995/95-sigart-inova.ps)

Uschold, M, King, M,Moralee, S and Zorgios, Y, 1995. ``The enterprise ontology'' (Available via WWWURL
http://www.aiai.ed.ac.uk/entprise/enterprise/ontology.html)

j . l e e e t a l . 120

