
July 21, 2009 10:6 International Journal of Production Research gruninger-etal

Combining RFID with Ontologies to Create Smart Objects

Michael Grüningera∗, Steven Shapirob, Mark S. Foxa, and Harald Weppnerc

aDepartment of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Ontario, Canada; bDepartment of Computer Science, University of

Toronto, Toronto, Ontario, Canada; cSAP Research, SAP Labs LLC, Palo Alto,
CA, USA

∗Corresponding author. Email: gruninger@mie.utoronto.ca

0



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

1



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research
Vol. 00, No. 00, 00 Month 200x, 1–23

RESEARCH ARTICLE

Combining RFID with Ontologies to Create Smart Objects

(Received 00 Month 200x; final version received 00 Month 200x)

RFID technology has long been known for its ability to uniquely identify objects. Recent
years have witnessed a significant increase in storage capacity on the tag, which is giving rise
to a new set of application scenarios. As the tag itself can carry relevant context information,
processes can be managed locally rather than relying on a centralized system infrastructure.
This in turn results in a massive interoperability challenge. We propose to solve this problem
by combining RFID technology with ontologies to create smart objects in the context of
manufacturing process control. The idea is to store information originating from an SAP ERP
system using the PSL Ontology (ISO 18629) for representing processes and time directly on
the RFID tags. As an item flows through a manufacturing process, information about the
item can be stored on its tag. This information, along with the PSL axioms can be used to
make inferences about the manufacturing process and the item in particular. In this paper,
we discuss our formalization of an ontology for the SAP data model and show an example of
translating data from an SAP ERP system into PSL axioms, and answering queries about a
manufacturing process.

Keywords: RFID; smart objects; manufacturing; ontologies; Process Specification
Language; automated reasoning

1. Introduction

In today’s global economy, manufacturing enterprises must employ increasingly ef-
fective and efficient information systems. Such systems should result in the seamless
integration of manufacturing applications and exchange of manufacturing process
information between applications within and across enterprise boundaries. A new
approach to achieve this integration has been the notion of proactive computing, in
which information systems act in anticipation of future problems, needs, or changes
of the user.

To be proactive, a computer system must understand the user’s context and
how it changes over time. Within manufacturing enterprises, this can be facilitated
by the recording of process constraints associated with a particular resource as it
passes through the set of activities performed within the supply chain.

In these enterprises, RFID (Radio Frequency Identification) technology is used
to capture, retain, and transmit data about an object. An RFID tag is a device
that can serve as a means of identifying objects using radio transmissions; data
can be written and retrieved using readers that are in close proximity to the tag.
Some companies have used active or passive RFID tags to record a detailed his-
tory of the steps and conditions as each object or batch of objects goes through
the manufacturing process. While RFID tags originally held only 32-128 bits of
information the current generation of passive tags already hold 32 kilobytes while
active tags hold up to 4 megabytes of data or more. The memory size is expected
to increase in the future. Some companies write manufacturing instructions to the
tag, which can then be recalled at each step of the manufacturing process. In all

ISSN: 0020-7543 print/ISSN 1366-588X online
c© 200x Taylor & Francis
DOI: 10.1080/00207540xxxxxxxxx
http://www.informaworld.com



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

2

of these cases, the idea is to create smart objects by deploying RFID technologies
throughout the supply network. By analysing data and events in real-time, ob-
jects become self-directing, processes become self-managing, and the supply chain
becomes self-correcting.

Nevertheless, current deployments of RFID have not fully achieved this vision.
One problem has been that the information being encoded on the tags has often
been represented in an informal and ad hoc fashion. As a result, it has been difficult
to provide any automated dynamic decision support. In particular, truly proactive
systems need to be able to predict possible future behaviours. For example, if we
can identify the subsequent activities that may possibly occur so that the com-
plete set of constraints will be satisfied, then the set of predictions can be used to
dynamically determine the routing of the resource and prevent the occurrences of
any activities that are inconsistent with the set of process constraints.

Even in cases where the appropriate information is encoded on the RFID tags
- an approach known as ”data-on-tag”, enterprises must provide access to the
information by people, software applications, and business processes, anytime and
anywhere. Unfortunately, different applications and databases ascribe disparate
meanings to the same terms or use distinct terms to convey the same meaning. This
clash over the meaning of the terms prevents the seamless exchange of information
among the applications.

The objective of this paper is to specify a set of theories in first-order logic which
can support the design and implementation of smart objects that are able to predict
their possible future behaviours by deduction from their history and background
manufacturing process knowledge. The emphasis is on the following issues:

• specifying the manufacturing process knowledge that is to be encoded on RFID
tags;

• performing automated reasoning with the knowledge encoded on RFID tags;
• integrating this knowledge with the enterprise’s manufacturing software systems

(e.g. process modelling, process planning, scheduling, production planners, and
workflow management systems).

The representation of the process knowledge must be generic and reusable, so
that it can be used in multiple manufacturing scenarios. It needs to be expressive
enough to capture process plans and their properties, as well as the potential queries
related to future behaviours. Finally, it must be powerful enough to deduce the
solutions to queries from the axioms of the theory alone, rather than use extralogical
mechanisms, since the process knowledge is specified declaratively on the RFID tags
independently of domain-specific algorithms.

2. Related Work

Diekmann et al. (2007) compare two approaches on how object-related data and
processes are managed. In the “data-on-network” approach only identifying infor-
mation is stored on the RFID tag while related data and processes are managed
centrally. In the “data-on-tag” approach information is held on the tag - at least
initially. Advantages and disadvantages of each approach are discussed and it is
concluded that they should be seen as complementary. Melski et al. (2007) further
explore the specific benefits of ”data-on-tag” in comparison to “data-on-network”
applications. It identifies a lack of standards, which are required to allow reading
and writing data-rich tags across company boundaries. Through case studies it



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 3

Enterprise

Plant

Production 
order 

released

1

Translated 
to PSL & 
stored on 
RFID tag

2

Production
order 

Which activities 
must occur?

3 What’s next?

What 
happened?

5

4

Feeding back the 
activities that 

occurred 

6
Confirmation

Figure 1. Manufacturing process scenario.

identifies four general functions that “data-on-tag” applications specifically pro-
vide: informational, documentational, temporary storage and a control function.
The control function results in increased flexibility and adaptability - a clear ad-
vantage of decentralized over centralized process controlling. Guenther and Tri-
bowski (2009) identifies the future interoperability and integration problems for
“data-on-tag” applications whenever syntax and semantic are not agreed upon by
collaborating enterprises. It highlights the lack of a standard for storing object-
related data on RFID tags and raises this as a significant issue for a wider spread
adoption. ISO standard 13584 is explored to address the informational function,
i.e. deliver additional information on the object. Ruta et al. (2007) have shown
the possibilities of organizing the tag memory and enhancing the current standard
data exchange protocol in a compatible fashion.

3. Manufacturing Process Scenario

3.1 Dynamic Process Routing

The storyboard in Figure 1 motivates queries related to dynamic self-routing of
objects through the various process plans within the set of manufacturing processes.
Each product is associated with a set of process plans, which are partially ordered
sequences of manufacturing processes. In more general scenarios, such process plans
may also be nondeterministic (that is, involve different choices of sequences of
manufacturing processes). Objects “flow” through the sequence of processes. At
any point in a process plan, there are multiple activities that can possibly occur
next.

Furthermore, different process plans may have manufacturing processes in com-
mon, so that an object may participate in an activity that is part of multiple



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

4

1 2 3

4

5

6 1 4 7

1 2 3

4

5

6

7

(a) (b)

(c)

Figure 2. Process plans.

process plans. In Figure 2(a) and (b), we see two different process plans, and their
combination in Figure 2(c).

Each manufacturing process imposes constraints on the objects that participate
in the process. State constraints require that the objects satisfy specific properties
before the process can occur. If the object does not satisfy the state constraints,
then additional activities may occur so that the necessary state properties for the
object can be achieved.

The state constraints on manufacturing processes also influence possible routings
of objects — the next activity that occurs may depend on the properties of the
object. Temporal constraints require that different processes occur before speci-
fied deadlines. In such cases, an object may be routed to different manufacturing
processes.

The history of an object is the set of activity occurrences in which an object
participates as well as the order in which the activities occurred, and the times
at which the activities occurred. All of the dynamic process routing queries are
answered relative to the set of process plans that could possibly be occurring,
which is the set of process plans whose initial sequences of subactivity occurrences
are consistent with the history of the object.

3.2 Queries

All of the dynamic process routing queries focus on the choices that the object has
at different points in a process. Since no decisions need to be made where there
are no choices, we need to first identify the choicepoints in a process plan, that is,
the set of subactivities in the process plan after which we have a choice over what
activity occurs next. The object then needs to determine the nature of the choices,
and the impact of the choice on future decisions. The following informal queries
capture these intuitions.

Query 3.1 Is the object currently at a choicepoint?

Query 3.2 Is this a choice of which activities occur, or a choice of the ordering in
which to perform activities?



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 5

Query 3.3 Given that the object is at a choicepoint, determine which activities can
possibly occur next.

Query 3.4 Given that the object is at a choicepoint, can the choice to perform
some activity be postponed until later in the process? If not, then it must occur
next (even if other activities can possibly occur next).

Query 3.5 Which activities must not occur next, that is, which activities must
occur later?

Query 3.6 Which activities must occur in the same ordering, for any occurrence
of the process?

Query 3.7 Is there a point in the process after which the same activities occur? If
such a point exists, then all of the remaining choices will simply be over the order
in which the activities occur.

Query 3.8 Is there a point in the process after which the order of the activities is
the same for all occurrences of the process? After such a point, we cannot make
any choices about the order in which the activities occur.

The dynamic process routing queries are also related to process verification.
Process plans specify the set of activities that is intended to occur, while the
object history records the set of activities that actually occurred. If any activity
occurred which should not have occurred or an activity occurrence violated an
ordering constraint, then the object history will not correspond to the occurrence
of any process plan.

3.3 Inferences

The dynamic process routing queries are answered using the following sets of sen-
tences, which are written on the RFID tag for the object:

• object history
• all possible process plans
• manufacturing process ontology

In the following sections, we will consider each of these aspects.

4. Ontology for Manufacturing Processes

The key component in the representation of the knowledge written on the RFID
tag is the manufacturing process ontology, which specifies the semantics of concepts
such as process plans, activity occurrences, and ordering constraints. In this section,
we give an overview of the ontology. We begin by considering why ontologies are
needed in the first place.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

6

4.1 The Need for Ontologies

Ontologies address two major challenges with respect to the sharability and
reusability of knowledge. The first challenge is a lack of interoperability among
the various applications that the enterprises use. Interoperability is hindered be-
cause different applications may use different terminology and representations of
the domain. Even when applications use the same terminology, they often asso-
ciate different semantics with the terms. This clash over the meaning of the terms
prevents the seamless exchange of information among the applications. Typically,
point-to-point translation programs are written to enable communication from one
specific application to another. However, as the number of applications has in-
creased and the information has become more complex, it has been more difficult
for software developers to provide translators between every pair of applications
that must cooperate. What is needed is some way of explicitly specifying the ter-
minology of the applications in an unambiguous fashion.

The second problem faced by enterprises today is a lack of reusability. The knowl-
edge bases that capture the domain knowledge of engineering applications are of-
ten tailored to specific tasks and projects. When the application is deployed in
a different domain, it does not perform as expected, often because assumptions
are implicitly made about the concepts in the application, and these assumptions
are not generic across domains. For example, machine models are often designed
specifically about a particular set of properties about specific machines rather than
characterising generic properties of machines, such as reusability, setup activities,
and operating conditions.

To address these challenges, various groups within industry, academia, and gov-
ernment have been developing sharable and reusable models known as ontologies.
All ontologies consist of a vocabulary along with some specification of the meaning
or semantics of the terminology within the vocabulary. In doing so, ontologies sup-
port interoperability by providing a common vocabulary with a shared semantics.
Rather than develop point-to-point translators for every pair of applications, one
simply needs to write one translator between the application’s terminology and the
common ontology. Similarly, ontologies support reusability by providing a shared
understanding of generic concepts that span across multiple projects, tasks and
environments.

The various ontologies that have been developed can be distinguished by their
degree of formality in the specification of meaning. With informal ontologies, the
definitions are expressed loosely in natural language. Semi-formal ontologies pro-
vide weak constraints, such as taxonomies, of the terminology. Formal ontologies
use languages based on mathematical logic. Informal and semi-formal ontologies
can serve as a framework for shared understanding among people, but they are
often insufficient to support interoperability, since any ambiguity can lead to in-
consistent interpretations and hence hinder integration. Thus, simply sharing ter-
minology is insufficient to support interoperability — the applications must share
their semantics as well.

4.2 Process Specification Language

The Process Specification Language (PSL) (Bock and Grüninger 2005, Grüninger
and Menzel 2003, Grüninger 2004, Schlenoff et al. 1999) has been designed to facil-



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 7

itate correct and complete exchange of process information.1 The primary purpose
of PSL is to enable the semantic interoperability of manufacturing process descrip-
tions between manufacturing engineering and business software applications such
as process planning, scheduling, workflow, and project management. Additional ap-
plications of PSL include business process design and analysis, the implementation
of business processes as web services, and enterprise modelling.

The PSL Ontology is a modular set of theories in the language of first-order logic.
All core theories within the ontology are consistent extensions of a theory referred
to as PSL-Core, which introduces the basic ontological commitment to a domain
of activities, activity occurrences, timepoints, and objects that participate in ac-
tivities. Additional core theories capture the basic intuitions for the composition of
activities, and the relationship between the occurrence of a complex activity and
occurrences of its subactivities.

In order to formally specify a broad variety of properties and constraints on com-
plex activities, we need to explicitly describe and quantify over complex activities
and their occurrences. Within the PSL Ontology, complex activities and occur-
rences of activities are elements of the domain and the occurrence of relation is
used to capture the relationship between different occurrences of the same activity.

A second requirement for formalising queries is to specify composition of activ-
ities and occurrences. The PSL Ontology uses the subactivity relation to capture
the basic intuitions for the composition of activities. Complex activities are com-
posed of sets of atomic activities, which in turn are either primitive (i.e., they have
no proper subactivities) or they are concurrent combinations of primitive activities.

Corresponding to the composition relation over activities,
subactivity occurrence is the composition relation over activity occurrences.
Given an occurrence of a complex activity, subactivity occurrences are occurrences
of subactivities of the complex activity.

Finally, we need some way to specify ordering constraints over the subactivity oc-
currences of a complex activity. The PSL Ontology uses the min precedes(s1, s2, a)
relation to denote that subactivity occurrence s1 precedes the subactivity occur-
rence s2 in occurrences of the complex activity a. Note that there could be other
subactivity occurrences between s1 and s2. We use next subocc(s1, s2, a) to denote
that s2 is the next subactivity occurrence after s1 in occurrences of the complex
activity a.

A fundamental structure within the models of the axioms of the PSL Ontology
is the occurrence tree, whose branches are equivalent to all discrete sequences of
occurrences of atomic activities in the domain. Elements of the occurrence tree are
referred to as arboreal occurrences.

Although occurrence trees characterise all sequences of activity occurrences, not
all of these sequences will intuitively be physically possible within a given domain.
We therefore consider the subtree of the occurrence tree that consists only of possi-
ble sequences of activity occurrences, which we refer to as the legal occurrence tree.
The legal(o) relation specifies that the atomic activity occurrence o is an element
of the legal occurrence tree.

The basic structure that characterises occurrences of complex activities within
models of the ontology is the activity tree, which is a subtree of the legal occurrence
tree that consists of all possible sequences of atomic subactivity occurrences of an

1PSL has been published as an International Standard (ISO 18629) within the International Organisation
of Standardisation. The full set of axioms (which we call Tpsl) in the Common Logic Interchange Format
is available at http://www.mel.nist.gov/psl/ontology.html.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

8

activity; the relation root(s, a) denotes that the subactivity occurrence s is the
root of an activity tree for a. Elements of the tree are ordered by the min precedes
relation; each branch of an activity tree is a linearly ordered set of occurrences of
subactivities of the complex activity. In addition, there is a one-to-one correspon-
dence between occurrences of complex activities and branches of the associated
activity trees.

In a sense, an activity tree is a microcosm of the occurrence tree, in which we
consider all of the ways in which the world unfolds in the context of an occurrence of
the complex activity. Different subactivities may occur on different branches of the
activity tree — different occurrences of an activity may have different subactivity
occurrences or different orderings on the same subactivity occurrences (see the
examples in Figure 3). This distinction plays a key role in the specification of the
reasoning problems in this paper.

4.3 Ontology of Process Plans

There have been many proposals for the representation of process plans (Cho and
Wysk (1995), Sormaz and Khoshnevis (2003)), particularly with respect to struc-
tures such as AND/OR graphs. Nevertheless, such approaches are not directly
suitable for the task at hand, since the intended semantics of the process plans
is implicit in the algorithms used to interpret the AND/OR graphs. As a result,
automated reasoning through theorem provers with declarative specifications of
processes is inhibited.

The ontology of process plans discussed in this paper is a theory within the PSL
Ontology containing axioms for classes of activities whose activity trees are defined
with respect to partial orderings over their subactivity occurrences. In particular,
the set of axioms in the PSL Ontology captures all of the intuitions of the graph-
theoretic representation of process plans.

In this paper we also introduce two new consistent extensions of the PSL Ontol-
ogy which are used to capture the notion of process plan composition and intuitions
specific to the issue of choicepoints within a process plan.

4.3.1 Process Plans

The fundamental intuition in the ontology of process plans is the notion of a
partial ordering that is embedded within the activity trees of a complex activity.
Different classes of process plans are defined by characterising the relationship
between the partial ordering and the set of possible occurrences of a process plan.

Three new relations are introduced to specify the relationship between the
partial ordering (referred to as the subactivity occurrence ordering) and the ac-
tivity tree. The relation soo(s, a) denotes that the activity occurrence s is an
element of the subactivity occurrence ordering for the activity a. The relation
soo precedes(s1, s2, a) captures the ordering over the elements. For example, the



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 9

partial ordering in Figure 3(a) can be defined by:1

soo(s1
1, a) ∧ soo(s2

2, a), soo(s3
3, a) ∧ soo(s4

4, a) ∧ soo(s5
5, a)

∧ soo precedes(s1
1, s

2
2, a) ∧ soo precedes(s1

1, s
3
3, a) ∧ soo precedes(s2

2, s
4
4, a)

∧ soo precedes(s2
2, s

5
5, a) ∧ soo precedes(s3

3, s
4
4, a) ∧ soo precedes(s3

3, s
5
5, a)

the activity trees in Figure 3(b),(c),(d),(e) can all be mapped to the partial ordering
in Figure 3(a).

The relation mono(s1, s2, a) indicates that s1 and s2 are occurrences of the same
subactivity on different branches of the activity tree for a. In the activity tree in
Figure 3(c) we have:

mono(s2
2, s

2
7, a) ∧mono(s3

3, s
3
6, a) ∧mono(s4

4, s
4
9, a) ∧mono(s4

4, s
4
10, a) ∧mono(s4

4, s
4
13, a)

∧mono(s5
5, s

5
8, a) ∧mono(s5

5, s
5
11, a) ∧mono(s5

5, s
5
12, a)

There are three basic classes of process plans, each of which impose different
occurrence constraints on the elements of the partial ordering:

• strong poset activities
• choice poset activities
• complex poset activities

For strong poset activities, there is a one-to-one correspondence between
branches of the activity tree and the linear extensions of the partial ordering.
The partial ordering in Figure 3(a) has four linear extensions:

s1
1s

2
2s

3
3s

4
4s

5
5, s1

1s
2
2s

3
3s

5
5s

4
4, s1

1s
3
3s

2
2s

4
4s

5
5, s1

1s
3
3s

2
2s

5
5s

4
4

which correspond to the branches of the strong poset activity tree in Figure 3(c).

For choice poset activities, there is a one-to-one correspondence between branches
of the activity tree and the maximal chains in the partial ordering. The partial
ordering in Figure 3(a) has four maximal chains:

s1
1s

2
2s

4
4, s1

1s
2
2s

5
5, s1

1s
3
3s

4
4, s1

1s
3
3s

5
5

which correspond to the branches of the choice poset activity tree in Figure 3(b).

A complex poset activity is the union of the strong poset activities corresponding
to a set of linear extensions for suborderings of the partial ordering.

For example, given the partial ordering in Figure 3(a), the activity tree in Figure
3(b) is a choice poset activity, the activity tree in Figure 3(c) is a strong poset
activity, and the activity trees in Figure 3(d) and (e) are complex poset activities.

For a strong or choice poset activity, there exists a unique activity tree corre-
sponding to the partially ordered set. For complex poset activities, the relationship
between the activity tree and the partial ordering is a little more complicated, since

1Each activity occurrence is an occurrence of a unique activity but activities can have multiple occurrences,

so we label activity occurrences using the following convention: for activity occurrence sj
i , i is a unique

label for the occurrence and j denotes the activity of which it is an occurrence. For example, s1
1 and s1

2
are two occurrences of the activity a1.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

10

s1
1

s2
2

s3
3

s4
4

s5
5

s1
1

s2
2

s3
3

s4
4

s5
5

s1
1

s2
2 s3

3

s4
4 s5

5

s4
6

s5
7

s3
6

s5
8 s4

9

s4
10 s5

11

s5
12 s4

13

s2
7

s1
1

s2
2 s3

3

s4
4

s5
5

s3
6

s5
8

s4
9

s2
7

s1
1

s2
2

s3
3

s4
4

(a)

(b) (c)

(d) (e)

s5
5

s5
6 s4

7

s4
8 s5

9

s5
10 s4

11

Figure 3. Classes of poset activities.

there can be multiple possible activity trees corresponding to the same partial or-
dering. The key is to consider the role of the incomparable elements in the partial
ordering. In strong poset activities, incomparable elements in the partial ordering
correspond to subactivities that occur in any order. In choice poset activities, in-
comparable elements in the partial ordering correspond to subactivities that never
occur on the same branch of the activity tree.

Two relations are introduced in the PSL Ontology that allow one to specify
whether or not two incomparable elements in the partial ordering correspond to
subactivities that occur in any order or whether they are subactivities that never
occur on the same branch of the activity tree. The same bag relation is used to
specify suborderings whose linear extensions are contained in branches of the activ-
ity tree. The alternate relation is used to specify the sets of subactivity occurrences
that can never be elements of the same branch of the activity tree; this is equiva-
lent to specifying the suborderings whose chains are contained in branches of the
activity tree.

For example, consider the partial ordering in Figure 3(a), in which s2
2 and s3

3 are
incomparable, as are s4

4 and s5
5. The choice poset activity tree in Figure 3(b) can

be described by:

alternate(s2
2, s

3
3, a) ∧ alternate(s4

4, s
5
5, a)



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 11

Note that for choice posets, all incomparable elements in the ordering are alternate
with respect to each other. On the other hand, for strong posets, all incomparable
elements in the ordering are in the same bag, so that the strong poset activity tree
in Figure 3(c) is described by

same bag(s2
2, s

3
3, a) ∧ same bag(s4

4, s
5
5, a)

For complex posets, we use both relations; for example, the complex poset activity
tree in Figure 3(d) is specified by

same bag(s2
2, s

3
3, a) ∧ alternate(s4

4, s
5
5, a)

because every linear extension of s2
2 and s3

3 are contained in the branches and every
chain in the subordering defined by s4

4 and s5
5 are contained in the branches of the

activity tree.

4.3.2 Composition of Process Plans

In order to represent the problem of identifying the set of process plans that
could possibly be occurring, given the object history, we will consider the complex
activity that consists of all possible process plans as subactivities. This approach
allows us to explicitly represent the set of all possible activity occurrences; choices
are made with respect to this set.

Since an activity tree represents all possible sequences of subactivity occurrences
corresponding to occurrences of the activity, the composition of a set of process
plans is equivalent to the union of the activity trees for those process plans. The
activity that contains all possible process plans as subactivities is the maximum
activity, and it can be proven that such an activity is unique for a given set of
process plans. Finally, we want to restrict the composition to the set of process
plans, rather than consider the composition of all possible primitive activities;
on the other hand, the transitivity of the subactivity relation means that the
primitive activities are also subactivities of the maximum activity. For this reason,
we introduce the notion of a maximal subactivity to allow us to distinguish between
subactivities of the maximum activity that are process plans and subactivities that
are primitive activities.

Figure 4 shows the axioms (called Tmax) that extend the PSL Ontology to specify
the composition of process plans.

4.3.3 Properties of Activity Trees

Finally, we need two additional relations that characterise structural properties
of activity trees that are relevant to the intuition of making a choice at some point
of a process plan. For example, consider the activity tree in Figure 3(c). After the
element s1

1, either activity a2 or a3 may occur next, although both subactivities
occur on every branch of the activity tree; the only choice in this case is selecting
the order in which to perform a2 and a3. On the other hand, after the element s3

3,
a choice must be made to either perform a4 or a5 next.

The choicepoint relation captures the idea that there are multiple possible sub-
activities that may occur next. In Figure 3(c), s3

3 and s2
7 are both choicepoints. The

weak choicepoint relation captures the intuition that the choice involved is with
respect to determining the ordering in which to perform the following subactivities.
In Figure 3(c), s1

1 is a weak choicepoint. The axioms defining these relations (called
Tchoicepoint) are given in Figure 5; these axioms are a consistent extension of the
PSL Ontology.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

12

A maximum activity is one that contains all process plans as subactivities.

(∀a) maximum(a) ≡ ((∀a1) activity(a1) ⊃ subactivity(a1, a)) (1)

The activity a1 is a maximal subactivity of the activity a2 if there is no other
activity that is a subactivity of a2 that is not already a subactivity of a1.

(∀a1, a2) maximal sub(a1, a2) ≡ subactivity(a1, a2)

∧ ((∀a3) subactivity(a1, a3) ∧ subactivity(a3, a2) ⊃ ((a3 = a1) ∨ (a3 = a2))) (2)

There exists a maximum activity.

(∃a) maximum(a) (3)

All maximal subactivities of the maximum activity are process plans.

(∀a1, a2) maximum(a2) ∧maximal sub(a1, a2)

⊃ ((strong poset(a1) ∨ choice poset(a1) ∨ complex poset(a1)) (4)

The maximum activity is the composition of the process plans, that is, the activity
trees for the maximum activity is the union of the activity trees for the process
plans that are subactivities.

(∀a) maximum(a) ⊃

((∀s1, s2) min precedes(s1, s2, a) ≡ (∃a1) maximal sub(a1, a) ∧min precedes(s1, s2, a1)
(5)

Figure 4. Tmax: axioms for maximum activities.

The subactivity occurrence s is a choicepoint in an activity tree for the activity a
if it has multiple distinct successors in the activity tree.

(∀s, a) choicepoint(s, a) ≡

((∀s1) mono(s, s1, a) ⊃ (∃s2, s3) next subocc(s1, s2, a)

∧ next subocc(s1, s3, a) ∧ (s2 6= s3)) (6)

The subactivity occurrence s is a weak choicepoint in an activity tree for the
activity a if all of its successors in the activity tree occur on each branch.

(∀s, a) weak choicepoint(s, a) ≡

(∀s1, s2) next subocc(s, s1, a) ∧ next subocc(s, s2, a)

⊃ (∃s3) next subocc(s1, s3, a) ∧mono(s2, s3, a) (7)

Figure 5. Tchoicepoint: axioms for properties of activity trees.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 13

4.4 Formalisation of Process Constraints

In addition to the ontology of process plans, we also need to specify classes of
sentences that capture the constraints of the particular domain; intuitively, this
corresponds to the knowledge about instances of classes of objects and processes.

4.4.1 Object History

The history of an object is the set of activity occurrences in which an object
participates as well as the order in which the activities occurred, and the times at
which the activities occurred. This is formalised as the following class of sentences,
which is parameterised by an object, K:

Definition 4.1: Σhistory(K) is a sentence of the form:

(∃o1, . . . , on, o, a) occurrence of(o1, A1) ∧ . . . ∧ occurrence of(on, Am)

∧ actual(o1) ∧ . . . ∧ actual(on)

∧ participates in(K, o1, T1) ∧ . . . ∧ participates in(K, on, Tn)

∧ before(T1, T2) ∧ . . . ∧ before(Tn−1, Tn) ∧ root(o1, a)

∧min precedes(o1, o2, a) ∧ . . . ∧min precedes(on−1, on, a)

∧maximum(a) ∧ occurrence of(o, a).

The object history is rewritten on the object’s RFID tag after each activity
occurrence. After each activity occurs, this sentence is augmented with the cor-
responding information about which activity occurred and the time at which it
occurred 1. Ordering information is captured by the before and min precedes
literals.

The object history sentence also asserts the existence of an occurrence of a max-
imum activity that contains all activity occurrences in the object history for the
object K as subactivity occurrences. This additional condition allows us to charac-
terise the dynamic process routing queries with respect to properties of the activity
trees of the maximum activity.

4.4.2 Process Descriptions

A process description is an axiom schema that can be used to specify the occur-
rence and ordering constraints on an instance of a process plan in some class. For
example, a strong poset activity a has a process description of the form:

∀o.occurrence of(o, a) ⊃

∃s1, . . . , sn.occurrence of(s1, a1) ∧ . . . ∧ occurrence of(sn, an)

∧ subactivity occurrence(s1, o) ∧ . . . ∧ subactivity occurrence(sn, o)

∧min precedes(si1 , sj1 , a) ∧ . . . ∧min precedes(sik
, sjk

, a), (8)

where i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , n}.

1The actual relation is used to distinguish activity occurrences that have actually occurred, as distinct
from activity occurrences that are possible within the activity tree



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

14

This schema says that for any occurrence o of activity a there is a set of oc-
currences s1, . . . , sn that are occurrences of activities a1 . . . an, resp., and they are
subactivity occurrences of o. The min precedes literals (partially) constrain the
order in which the subactivity occurrences occur. This is an axiom schema because
a, a1, . . . , an are unbound. Here a is the activity corresponding to the strong poset
activity, and a1, . . . , an are atomic subactivities of a. In an instantiation of the
schema, these unbound variables are replaced with appropriate activity terms to
describe a particular strong poset activity. The axioms for the process plans will
be denoted by Σpd.

4.4.3 Antecedents for the Reasoning Problems

In summary, every reasoning problem has the following sets of sentences in the
antecedent:

Tpsl ∪ Tmax ∪ Tchoicepoint ∪ Σhistory(K) ∪ Σpd

If this set of sentences is inconsistent, then either an unexpected activity has
occurred at some point in the object history, or an activity occurrence in the
object history has violated an ordering constraint.

4.5 Formalisation of Queries

The dynamic process routing queries characterise properties of the activity trees
of the maximum activity. Using the ontology of manufacturing processes, we can
formalise the informal queries from Section 2.2 as the following sentences:

• Is the current subactivity occurrence a choice point?

(∃s, a) maximum(a) ∧ choicepoint(s, a) ∧ occurrence of(s, a1) (9)

• Is the current subactivity occurrence a weak choice point?

(∃s, a) maximum(a) ∧ weak choicepoint(s, a) ∧ occurrence of(s, a1) (10)

• Which subactivities can possibly occur next after an occurrence of a1?

(∃a) maximum(a)

∧ ((∀s1) occurrence of(s1, a1) ⊃ (∃a2, s2) subactivity(a2, a)

∧ occurrence of(s2, a2) ∧ next subocc(s1, s2, a))) (11)

• Does there exist a subactivity that must occur next after an occurrence of a1?

(∃a) maximum(a)

∧ ((∀o, s1) occurrence of(s1, a1) ∧ occurrence of(o, a)

occurrence of(s2, a2) ∧ subactivity occurrence(s2, o)

∧ next subocc(s1, s2, a)) (12)



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 15

• Which subactivities must occur later after an occurrence of a1?

(∃a) maximum(a)

∧ ((∀o, s1) occurrence of(s1, a1) ∧ occurrence of(o, a) ∧ subactivity occurrence(s1, o)

⊃ (∃a2, s2) occurrence of(s2, a2) ∧min precedes(s1, s2, a) ∧ subactivity occurrence(s2, o))
(13)

• Which activities must occur in the same order?

(∃a1, a2, a) maximum(a) ∧ subactivity(a1, a) ∧ subactivity(a2, a)

∧ ((∀s, s1, s2, s3, s4) mono(s1, s3, a) ∧mono(s2, s4, a) ∧ occurrence of(s1, a1)

∧ occurrence of(s2, a2) ∧ occurrence of(s3, a1) ∧ occurrence of(s4, a2)

∧min precedes(s, s3, a) ∧ root(s, a) ∧min precedes(s1, s2, a)

∧min precedes(s, s4, a) ⊃ ¬min precedes(s4, s3, a)) (14)

• Does there exist a point in an activity tree a after which the same subactivities
occur? (After this point, there will be no choice about which activities occur.)

(∃a, a1, s1) maximum(a) ∧ subactivity(a1, a) ∧ occurrence of(s1, a1)

∧ ((∀o1, o2) occurrence of(o1, a) ∧ occurrence of(o2, a)

∧ subactivity occurrence(s1, o1) ∧ subactivity occurrence(s1, o2)

∧min precedes(s1, s2, a)

⊃ (∃s3) subactivity occurrence(s3, o2) ∧min precedes(s1, s3, a) ∧mono(s2, s3, a)
(15)

• Does there exists a point in each activity tree for a after which the ordering over
the subactivities a1 and a2 is the same? (After this point, there will be no choice
about the ordering in which the activities occur.)

(∃a, a1) maximum(a) ∧ subactivity(a1, a) ∧ occurrence of(s, a1)

∧ ((∀s′, s1, s2, s3, s4) root(s′, a) ∧min precedes(s′, s, a) ∧min precedes(s, s1, a)

∧min precedes(s, s2, a) ∧mono(s1, s3, a) ∧mono(s2, s4, a)

∧min precedes(s, s3, a) ∧min precedes(s, s4, a) ∧ occurrence of(s1, a1)

∧ occurrence of(s2, a2) ∧ occurrence of(s3, a1) ∧ occurrence of(s4, a2)

⊃ ((min precedes(s1, s2, a) ≡ min precedes(s3, s4, a))) (16)

5. Semantic Integration with SAP ERP

As an example of the application of these ideas, we formalised a fragment of the
SAP ERP data model for discrete manufacturing processes in PSL, which we call
the SAP Ontology. We then wrote a program which translates a production order
exported from SAP ERP into the SAP Ontology. Once the production order was
represented in this form, we could use an automated theorem prover to answer
queries about the production order. With the addition of axioms about the history



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

16

of the item being produced (which, in this example, is a pump), as it flows through
the manufacturing process, we can also use the theorem prover to answer queries
about the item as it is being manufactured.

5.1 Formalising the SAP Data Model

The central construct in the SAP Ontology is the SAP production order. A pro-
duction order can contain multiple “sequences” of operations. The sequences can
be of three types: simple sequence, alternate sequence or parallel sequence. A simple
sequence is a finite, linearly ordered sequence of operations. Each production order
has a main simple sequence called the standard sequence. Branching off from the
standard sequence can be parallel or alternate sequences. Each parallel or alternate
sequence is also a simple sequence, but it also has start and end branch points to
indicate the subsequence of the standard sequence that it is parallel to or alter-
nates with. Parallel sequences occur in parallel with the corresponding standard
subsequence, but alternate sequences, if they are chosen for execution, will occur
instead of the corresponding subsequence of the main sequence. The definitions of
the classes of process plans in the SAP Ontology can be found in Figure 6.

There are tags and values associated with a production order, sequence, and
operation. For example, each production order has a material number and quantity
associated with it. The production order will produce that quantity of the material.
There are also tags to specify a name for the material, the sequences, and the
operations, as well as various start and end times and dates, e.g., earliest and
latest scheduled start and end times, processing times, wait times, etc. An operation
can also have components associated with it; these are the components that are
consumed as part of the operation.

The full SAP Ontology includes definitions for concepts such as production or-
ders, as well as temporal relations, such as the earliest and latest start and finish
times of an operation. Other objects, such as the items being manufactured and
their components are modelled as PSL objects.

5.2 Formalisation of the Manufacturing Process Control Scenario

In this section, we discuss the formalisation and results of a manufacturing process
control scenario. Our example is of a pump manufacturing process. The process
plan for the production order (60004907) is shown in Fig. 7.

The operation numbers (as assigned by the SAP ERP system) are shown in
parenthesis. Note that the final assembly is accomplished in two operations (0040
and 0040-2) which are performed in parallel. Here, steps 1–3 are done sequentially,
following which, steps 4 and 5 are done in parallel, and then steps 6–7 are done
sequentially. The standard sequence for this production order is the sequence of
operations: 0010, 0020, 0030, 0040, 0050, 0060. There is also a parallel sequence
that consists only of the operation 0040-2 and is in parallel with the standard
subsequence consisting of the single operation 0040.

This production order was created using the SAP ERP system and exported into
a custom format with IDOC1 tags and values that are embedded in a LISP list
structure. An excerpt of an example of an exported IDOC file is shown in Fig. 8.
This output is then read into a LISP program which translates the IDOC tags

1IDOC is a data interchange format for SAP programs.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 17

An activity is a simple sequence if each of its activity trees has a unique branch.

(∀a) simple sequence(a) ≡

((∀s1, s2, s3) min precedes(s1, s2, a) ∧min precedes(s1, s3, a) ⊃

(min precedes(s2, s3, a) ∨min precedes(s3, s2, a) ∨ (s2 = s3)) (17)

An activity a1 is a standard sequence for an activity a2 if it is a simple sequence that
contains subactivity occurrences that correspond to the choicepoints in activity
trees for a2.

(∀a1, a2) standard sequence(a1, a2) ≡

((simple sequence(a1) ∧ subactivity(a1, a2)

∧ ((∀s1) choicepoint(s1, a2) ⊃ (∃s2) soo(s2, a1) ∧mono(s1, s2, a2)) (18)

An activity is an SAP process plan if it is a poset activity tree that contains a
standard sequence.

(∀a) sap process plan(a) ≡

((∃a′) standard sequence(a′, a)

∧ (choice poset(a) ∨ strong poset(a) ∨ complex poset(a))) (19)

An activity is a parallel sequence if it is a simple sequence such that all of its
subactivity occurrences are in the same bag with respect to the standard sequence
of the process plan.

(∀a) parallel sequence(a) ≡ simple sequence(a)

∧ ((∀a1, a2, s1, s2) sap process plan(a1) ∧ subactivity(a, a1) ∧ standard sequence(a2, a1)

∧ soo(s1, a) ∧ soo(s2, a2) ⊃ same bag(s1, s2, a1)) (20)

An activity is an alternate sequence if it is a simple sequence such that all of its
subactivity occurrences are alternate with respect to the standard sequence of the
process plan.

(∀a) alternate sequence(a) ≡ simple sequence(a)

∧ ((∀a1, a2, s1, s2) sap process plan(a1) ∧ subactivity(a, a1) ∧ standard sequence(a2, a1)

∧ soo(s1, a) ∧ soo(s2, a2) ⊃ alternate(s1, s2, a1)) (21)

Figure 6. Axioms for SAP process plans.

into a set of PSL axioms that capture the production order using the PSL and
SAP ontologies. This representation of the production order, along with the PSL
axioms and axioms for the SAP ontology are then input into Otter (McCune 2003),
a first-order logic theorem prover. Otter can then be used to answer queries about
the manufacturing process.

We now present the output of our translation program after we ran it on the
IDOC file excerpted in Figure 8. The first axiom declares 60004907 to be an SAP



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

18

0010 0020 0030 0040

0040-2

0050 0060

Figure 7. Motivating scenario: operations for production order 60004907:
[1.] Retrieval of items on the picking list (0010)
[2.] Assembly according to the component drawing (0020)
[3.] Coat and paint (0030)

[4.] Final assembly (0040)
[5.] Final assembly (0040-2)

[6.] Inspect (0050)
[7.] Deliver to storage (0060)

( E1AFKOL ( AUFNR "60004907" )( APRIO )( APROZ "0.00" )
( AUART "PP01" )( AUFLD "20070831" )( AUTYP "10" )
( BAUMNG "0.000" )( BMEINS "PCE" )( BMENGE "10.000" )
( CY_SEQNR "00000000000000" )( DISPO "101" )( FEVOR "101" )
( FHORI "001" )( FLG_MLTPS )( FREIZ "005" )( FTRMI "20070815" )
( FTRMS "20070903" )( GAMNG "10.000" )( GASMG "0.000" )
( GETRI "00000000" )( GEUZI "000000" )( GLTRI "00000000" )
( GLTRP "20070914" )( GLTRS "20070912" )( GLUZP "000000" )
( GLUZS "150000" )( GMEIN "PCE" )( GSTRI "00000000" )
( GSTRP "20070906" )( GSTRS "20070910" )...

Figure 8. Excerpt of an exported IDOC file

production order.

sap production order(60004907)

The production order number was generated by the SAP ERP system and is taken
directly from the IDOC file. The axioms for the SAP ontology state that SAP
production orders are activities.

Next, we specify the standard sequence for the production order. To do this a
new symbol G1263 is generated and is declared to be a simple sequence. This is
the standard sequence for the production order.

simple sequence(G1263)

The name G1263 (and all other symbols beginning with ’G’) was generated by the
translation program.

G1263 is declared to be a subactivity of 60004907.

subactivity(G1263, 60004907)

Then 0010 is declared to be an SAP operation in the production order 60004907
and a subactivity of G1263.

sap operation(0010, 60004907)
subactivity(0010,G1263)

This is repeated for all the other operations in the standard sequence, but we omit
the axioms here. Recall that parallel sequences consist of a simple subsequence of



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 19

the standard sequence in parallel with one or more other simple sequences. In
this case we have only one parallel sequence where operation 0040-2 is in parallel
with 0040 of the standard sequence. We declare G1266 and G1264 to be simple
sequences with 0040 and 0040-2 (resp.) as subactivities.

simple sequence(G1266)
subactivity(0040,G1266)
simple sequence(G1264)
subactivity(0040-2,G1264)

Then, we say that G1265 is a parallel sequence, it is a subactivity of 60004907,
and it has two subactivities: G1266 and G1264.

parallel sequence(G1265)
subactivity(G1265, 60004907)
subactivity(G1266,G1265)
subactivity(G1264,G1265)

Finally, we have an axiom that specifies the order among the subactivity oc-
currences of the production order. It says that for any occurrence of the activity
60004907, there must be occurrences of the operations in Fig. 7 and they must
occur in the order shown in the figure.

∀occpo.occurrence of(occpo, 60004907) ⊃
∃occ10 , occ20 , occ30 , occ40 , occ50 , occ60 , occ40-2 .
occurrence of(occ10 , 0010) ∧ occurrence of(occ20 , 0020) ∧
occurrence of(occ30 , 0030) ∧ occurrence of(occ40 , 0040) ∧
occurrence of(occ50 , 0050) ∧ occurrence of(occ60 , 0060) ∧
occurrence of(occ40-2 , 0040-2) ∧ subactivity occurrence(occ10 , occpo) ∧
subactivity occurrence(occ20 , occpo) ∧ subactivity occurrence(occ30 , occpo) ∧
subactivity occurrence(occ40 , occpo) ∧ subactivity occurrence(occ50 , occpo) ∧
subactivity occurrence(occ60 , occpo) ∧ subactivity occurrence(occ40-2 , occpo) ∧
min precedes(occ10 , occ20 , 60004907) ∧min precedes(occ20 , occ30 , 60004907) ∧
min precedes(occ30 , occ40 , 60004907) ∧min precedes(occ40 , occ50 , 60004907) ∧
min precedes(occ50 , occ60 , 60004907) ∧min precedes(occ30 , occ40-2 , 60004907) ∧
min precedes(occ40-2 , occ50 , 60004907)

We also have unique names axioms for the activities, but we omit them here.
The RFID tags attached to items in the manufacturing process can record infor-

mation about what happens to them at different stages during manufacturing. This
information could be stored directly in the form of PSL axioms on a tag and then
used as further input to the theorem prover. To simulate this process, we added
some axioms that describe some simple information about an object, pump1, that
is being produced in this example production order. The axioms say that pump1
is an object and it participates in the operations 0010 and 0040-2. The idea is
that once each of these operations is completed, the corresponding axioms could
be written directly on the RFID tag for pump1.

object(pump1)
∃o.occurrence of(o, 0010) ∧ actual(o) ∧ participates in(pump1, o, beginof (o))
∃o.occurrence of(o, 0040-2) ∧ actual(o) ∧ participates in(pump1, o, beginof (o))



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

20

where beginof (o) denotes the start time of the activity occurrence o.
The above axioms, along with the axioms for PSL and the SAP ontology, can be

input into a theorem prover, which can then answer questions about the process of
manufacturing the pump. We now show the queries that were correctly answered
by the Otter theorem prover.

What are the simple sequences that are subactivities of the production order?

∃a1.simple sequence(a1) ∧ sap production order(60004907) ∧
subactivity(a1, 60004907).

What are the subactivities of any parallel sequences that are subactivities of the
production order?

∃a1, a2.parallel sequence(a1) ∧ sap production order(60004907) ∧
subactivity(a1, 60004907) ∧ subactivity(a2, a1).

Which activities must occur in the production order?

∃a1.subactivity(a1, 60004907) ∧ a1 6= 60004907 ∧
∀occ.occurrence of(occ, 60004907) ⊃

∃s.occurrence of(s, a1) ∧ subactivity occurrence(s, occ).

Does some activity a1 always occur before some activity a2 in the production order?

∀o.occurrence of(o, 60004907) ⊃
∃s1, s2, a1, a2.
occurrence of(s1, a1) ∧ occurrence of(s2, a2) ∧
subactivity occurrence(s1, o) ∧ subactivity occurrence(s2, o) ∧
min precedes(s1, s2, 60004907).

Which subactivities occur before activity 0030 in the production order?

∃a1.subactivity(a1, 60004907) ∧
∀o.occurrence of(o, 60004907) ⊃

∃s1, s2.occurrence of(s1, a1) ∧ occurrence of(s2, 0030) ∧
subactivity occurrence(s1, o) ∧ subactivity occurrence(s2, o) ∧
min precedes(s1, s2, 60004907).

What process steps did the pump object go through?

∃o, t, a.participates in(pump1, o, t) ∧ occurrence of(o, a) ∧
actual(o) ∧ subactivity(a, 60004907).

Did the pump object participate in a parallel sequence in a process plan?

∃o, a1, t, a2.participates in(pump1, o, t) ∧ occurrence of(o, a1) ∧
actual(o) ∧ parallel sequence(a2) ∧ subactivity(a1, a2).

These queries were successfully proven by Otter, and Otter can also output the
bindings for the existentially quantified variables in its proofs, if desired.

We now summarise the steps in the process just described. A production order
representing a manufacturing process is created and released in the SAP ERP
system. This production order is then exported into the SAP IDOC format. The
IDOC file is input into our translation program, which outputs an axiomatisation



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

International Journal of Production Research 21

of the manufacturing process in PSL. These axioms, along with the axioms for
PSL, the SAP ontology and the axioms on the RFID tags are input into the Otter
theorem prover to answer queries about the manufacturing process. Ideally, at this
point, the answers to the queries could be translated back into the appropriate
SAP IDOC format and input to the SAP ERP system, e.g., as a production order
confirmation. However, we reserve this step for future work.

6. Summary

While analysing the reasons for a lack of integration between applications within
and across enterprise boundaries we identified the clash over the meaning of terms
by different applications as a leading cause. We outlined a manufacturing process
control scenario and identified a number of questions an ideal system should provide
answers to. This scenario illustrated and motivated the need for ontologies, which
led to the introduction of PSL and its primary purpose to enable the semantic
interoperability of manufacturing process descriptions between manufacturing, en-
gineering and business software applications. We further covered extensions to PSL
and transformed the informal questions to their formal representations. We then
explored this approach by integrating a particular business software application,
SAP ERP, and formalised a relevant subset of the SAP data model by building
an extension to the ontology that made the implicit semantics of the application’s
concepts explicit. We covered the translation process for the key concept in this
subset, the SAP production order, and illustrated how a theorem prover can now
provide answers to the questions posed.

Given the increasing capability to store information on an RFID tag the outcome
is that the physical flow of goods can become fully aligned with the correspond-
ing information flow. Accurate, individual product information becomes available
when and where needed and other software applications can interoperate with rel-
ative ease because the semantics of concepts are clearly defined. The deductive
capabilities of this system were also highlighted as answers to queries were found
that were well beyond the scope it was initially designed for.

Further research is needed into solving a broader range of queries for dynamic
process control. The queries in this paper have focussed on the ordering constraint
over subactivities; in general, we will also need to incorporate state and temporal
constraints, as well as reason about the preconditions and effects of activities within
a process plan. This will also enable the solution of queries related to quality
management and activity-based costing.

A second area of future work is to demonstrate provably correct semantic in-
tegration. Although ontologies can support the semantic integration of software
applications, we are faced with the additional challenge that few applications have
an explicitly axiomatized ontology. In this paper, we have used an ontology that
formalizes the data model of one such application; nevertheless, we need prove that
the ontology is the correct ontology for that application. Furthermore, a general
methodology for attribution and evaluation of ontologies for software systems is
required.

One limitation of this ontology-based approach arises from the intractability of
automated reasoning with first-order logic theories. There are cases where auto-
mated theorem provers such as Otter are unable to find a proof for a particular
query, even though the query sentence is in fact entailed by the axioms of the ontol-
ogy and process description. Even in cases where solutions are found, some queries



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

22 REFERENCES

take minutes to solve, whereas the dynamic environment of a factory floor requires
decisions to made within seconds. We are actively pursuing several strategies to
address this issue. The first is to identify tractable subsets of the ontology which
are required for the range of possible queries. Another idea is to specify additional
sentences which are consequences of the ontology and which can be used to more
efficiently find proofs. The third approach is to identify subclasses of process plans
for which the solution of queries are tractable.

Before concluding we would like to highlight some of the key potential business
benefits that can be expected from adopting the outlined approach.

• Improved local decisions that observe constraints of or even improve central
schedules

• Better business insight, e.g. determining an actual cost at item level
• Greater responsiveness to changes and disruptions such as late configuration

changes or machine breakdowns
• Ability to dynamically reroute work in process while managing production pro-

cess constraints
• Immediate identification and notification of quality problems
• Increased coordination among business partners across the supply network

Overall, we believe this utilisation of RFID can lead to lower manufacturing costs,
higher product quality and a greatly increased agility within the manufacturing
enterprise and across its supply network.

References

Bock, C. and Grüninger, M., 2005. PSL: A Semantic Domain for Flow Models.
Software and Systems Modeling Journal, 2, 209–231.

Cho, H. and Wysk, R., 1995. Intelligent Workstation Controller for Computer-
Integrated Manufacturing: Problems and Models. Journal of Manufacturing
Systems, 14, 252–263.

Diekmann, T., Melski, A. and Schumann, M., 2007. Data-on-Network vs. Data-
on-Tag: Managing Data in Complex RFID Environments. Waikoloa, USA,
January.

Grüninger, M., 2004. Ontology of the Process Specification Language. In: S. Staab
and R. Studer, eds. Handbook of Ontologies in Information Systems. Springer-
Verlag.

Grüninger, M. and Menzel, C., 2003. Process Specification Language: Principles
and Applications. AI Magazine, 24 (3), 63–74.

Guenther, O. and Tribowski, C., 2009. Storing Data on RFID Tags: a Standards-
Based Approach. Verona, Italy, June. To be published.

McCune, W., 2003. OTTER 3.3 Reference Manual. Technical Memorandum No.
263, Argonne National Laboratory ANL/MCS-TM-263.

Melski, A., Thoroe, L., Caus, T. and Schumann, M., 2007. Beyond EPC - Insights
from Multiple RFID Case Studies on the Storage of Additional Data on Tag.
Chicago, USA, August., 281–286.

Ruta, M., Di Noia, T., Scioscia, F. and Di Sciascio, E., 2007. Semantic-enhanced
EPCglobal Radio-Frequency IDentification. In: G. Semeraro, E. Di Sciascio,
C. Morbidoni and H. Stoermer, eds. Proceedings of SWAP 2007, the 4th Italian
Semantic Web Workshop, Bari, Italy, December 18-20, 2007, CEUR Work-
shop Proceedings. Online http://ceur-ws.org/Vol-314/56.pdf.



July 21, 2009 10:6 International Journal of Production Research gruninger-etal

REFERENCES 23

Schlenoff, C., Grüninger, M. and Ciociou, M., 1999. The Essence of the Process
Specification Language. Transactions of the Society for Computer Simulation,
16, 204–216.

Sormaz, D. and Khoshnevis, B., 2003. Generation of alternative process plans in
integrated manufacturing systems. Journal of Intelligent Manufacturing, 14
(6), 509–526.


